
On the Dimensionality of Reality
Paul Kotschy

12 August 2016
Compiled on March 10, 2025

Abstract

W
hat is reality?1 What is physical? What is metaphysical? Does an ineffable supernature
exist such that it extends beyond the reach of our empirical and rational faculties? If so,

then all is sorted, and we can happily bathe in the warm limpid water of our ignorance. But
if not so, then all is not sorted, and an icy uncertainty impels us to observe and contemplate
reality more seriously, without recourse to putative spirit-world material-world dualisms.

This work, then, derives from three interrelated convictions:
1. that dualism is, well, false.
2. that the physical world we experience day to day in a mundane sort of way is not the full

picture of reality, although it is an important picture.
3. that our naturalistic gazes are sufficient for a much deeper insight into reality, provided

we look carefully, perhaps more carefully than is comfortable.
In this work I mull the abovementioned questions. I begin by contemplating a most basic notion
of reality, namely, the notion of dimension. I then appeal to an empirical and rational mindset
to motivate for the existence of some such reality much richer than what we may easily intuit.
But no less real.

By exploring the notion of dimension in this manner, I offer an epistemologically rigorous
pathway to help discover such possible metaphysical realities. I argue that these realities have as
much right to existence as our own physical reality even though they are in principle orthogonal
to our own. And importantly, it this orthogonality, not duality, which distinguishes our physical
reality from any metaphysical ones. It is a distinction without boundary.

Contents

1 Introduction 3

2 Alone in a dark room 3

3 Pointer off my world 8

4 Landscape of worlds 11

5 Worldly epistemology 12

6 Embedded landscaping 14

7 Acknowledgments 19
1paul.kotschy@gmail.com

1

8 Appendix—Computed drawing with LATEX, TikZ, pkTikZ and PKREALVECTOR 20

8.1 Typesetting the figures with LATEX, TikZ and pkTikZ 20

8.2 Source code listings and the PKREALVECTOR C object class 24

8.2.1 The t-realities.c file . 24

8.2.2 The s-realities.c file . 30

8.2.3 The humpfigure.c file . 35

8.2.4 The hump.h and hump.c files . 46

8.2.5 The sundry.h and sundry.c files . 58

8.3 Making it all with make . 60

2

1 Introduction

O
ur intuition2 is shaped by an experience of a world that is three-dimensional in space, and
where time is some apparent universal parameter relative to which we position ourselves in

space. This experience is so powerful that we mostly carry out such positioning unconsciously and
automatically.

Space and time, together with the associated notion of dimensionality, therefore seem ubiquitous
and profoundly prevalent. And yet, they are difficult for me to grasp intuitively. Indeed, if I begin
by contemplating dimensionality beyond three, then I fail just as I begin.

Fortunately, all is not lost. The first three dimensions (in space) are moderately accessible, with
the first two objectively so. It is relatively easy to “look down” onto a flat plane or a set of lines
on the plane, and to intuit its existence in relation to our three dimensions.

Of course, our experience of space and time in this way is an approximation of something more
subtle, something in which space and time are not separate, and where our time keeping faculty
is neither constant nor universal.[1] This work neglects these subleties because it is more of a
philosophical study of the notion of dimensionality than it is of space and time themselves.

Herein I hope to argue, qualitatively at least, for the plausability of the existence of a much richer
geometrical world than ours, a world in which ours is but a particular case, albeit no less real. And
a world which exists right before our very eyes, even though we are in principle utterly unable to
see it!

As you join me on this philosophical journey, let’s take it slowly! Let’s take time to reflect on
notions so commonplace that they are ordinarily ignored, but which I believe harbour sublime
profundity.

And so we begin with abject simplicity. I imagine a hypothetical one-dimensional world. Such
a simple world will help clarify the very notion of dimension, and it will hopefully be a guide in
how (and where) we may transition between different notions of reality by an increment in the
number of dimensions. As we explore this world, we shall discover that it is embedded in our own
three-dimensional space. And importantly, we shall obtain heuristics for contemplating dimensions
higher than three in number.

2 Alone in a dark room

I
exist alone in a completely dark room. I hear nothing, see nothing, feel nothing. Indeed,
I do not feel alone because I am unable to feel. I am, if you will, suspended in a state of

weightlessness, free of any intertia, and unable to move.

To be sure, it is really not possible for us to experience a world such as this. Firstly, we are
ostensibly three-dimensional spatial beings, and any musing of the nature of an existence outside
three dimensions is speculative at best. And secondly, since our metabolic processes take place over
time, it is not possible to remove time itself from our imagination of the dark room. Nevertheless,
it is helpful for now to try imagine a world having a minimum of variability and stimulus.

The room is empty, save for a calibrated lever of sorts, and a simple calibrated dial, as shown in
Figure 1. Why must there be such a lever and a dial? Because without them, there would be no
world at all. Without them there would be no cause for there to be any effect.

2This work was inspired in part by the curious observation that the vector cross-product at a point on a surface
embedded in R3 is identical to the gradient at a corresponding point in a volume embedded in R4, and for which
volume the original surface is a contour surface. The vector cross-product is a useful tool for manipulating vectors
in R3. This is so, firstly, because of its inherent circular character, and secondly, because of the ease with which it
creates orthogonal vectors. Although strictly, in a tensorial sense, the vectors it creates are not true vectors. They
do not transform as vectors under coordinate transformations. But aside from its mere utilitarian value, the cross-
product has more to offer. Its correspondence with the gradient suggests how or where we might look for “hidden”
dimensionality in our world.

3

Surprisingly, I am aware of the lever and dial. I can see—or at least, perceive—the needle on the
dial, and I can read off its corresponding value. I can push and pull on the lever at will. This is my
one-dimensional world. All I can do is while away my time, manipulating the lever and watching
the dial. Although strictly speaking, if the lever is not to represent time itself, then not even time
exists.

s

s-Lever

a

Dial âa(s)

Figure 1: A “dark room” world comprised of nothing more than a lever and a dial.
Observation of the world reveals that the lever and the dial are predictably and reli-
ably connected. The lever position determines the dial reading. This connectedness is
expressed as the function a(s).

As I pull slightly on the lever, fixing it at some position, I notice the dial’s needle shift and come to
rest at some value. As I pull further on the lever, fixing it at some other position, the dial’s needle
comes to rest at some other value. This is of course of little interest. Except, after manipulating
the lever repeatedly, I begin to notice I can predict the value of the dial. In fact, I discover that
the lever and dial must be connected in some way. The lever position determines the value of the
dial. Predictably and reliably.

And that would be that. My ability to control the lever offers control over my reality, albeit a
simple one (the dial), and there would be no reason—indeed, no ability—to contemplate any other
reality. Of course, there is the nagging question of how the lever controls the dial; that is, of how
they are connected. But I might incline to relegate that nag to the realm of the metaphysical. Such
relegation is reasonable because my experience of reality offers no additional clues.

To describe (or record) my reality, I could, in my mind’s eye of course, write something like3

x(s) = aâ = a(s)â (1)

where s is a measure of the lever position, and a is the value I read (or perceive) on the dial, as
shown in Figure 1. The notation a(s) captures my observed connection between lever position s
and dial reading a. In effect, a is a function of s. The notation â shows that I have complete
freedom to fix the dial’s value by manipulating the lever. And x(s) stands for the entire state of
my reality—a one-dimensional reality consisting of a dial â, the dial’s value a, and a connection a(s)
between lever s and dial reading a. My world is closed, controlled, and utterly boring.

Now suppose that, for whatever reason, I become aware of a second dial. Pushing and pulling on
the lever seems also to have an affect on this second dial’s needle reading. And as before, after
manipulating the lever repeatedly, I discover a predictable connection between the lever and the
second dial, as shown in Figure 2.

Based on these observations, I could now describe (or record) the state of my reality with

x(s) = (a, b)â = (a(s), b(s))â = (a, b)(s)â (2)
3I have deliberately tried to delay the use of symbolic math language. But the few early mathematical expressions

are worth mulling over because I think they encapsulate concisely the notion of dimension and the developing state
of my reality.

4

s

s-Lever

a

Dial â

b

Dial b̂

a(s)

b(s)

Figure 2: A “dark room” world comprised of a lever and two dials. Observation of the
world reveals that the lever and the two dials are predictably and reliably connected. The
lever position determines the dial readings. The connectedness is expressed as the two
functions a(s) for dial â and b(s) for dial b̂.

where b is the reading on the second dial, and b(s) captures my observed connection between
lever s and second dial’s value b. The pair (a(s), b(s)) emphasises the fact that there are now two
such connections, one for each dial. And (a, b)(s) shows that although there are now two dials,
the predictability of the two connections between lever and dial value means that the pair can be
thought of singularly. Indeed, I am unable to influence one dial alone.

Once again, my world is closed and controlled. But now it’s slightly less boring. Why would the
alleged metaphysical realm include a second dial, identical to the first in appearance and hence
indistinguisable from the first, but connected differently than the first to the lever? And if there
are now two dials, could there be more dials to discover? And might there be another lever? And
of course, the very existence of these connections between lever and dial is becoming a niggle. Why
are they there? There is nothing in my world which motivates for them.

Without any additional immediate insights or artifacts with which to clarify or embelish my ex-
perience of reality, I could simply capitulate, convincing myself that that is simply the way things
are, predetermined by some opaque metaphysical realm, worked by the Divine Watchmaker, God
in control. And I would confess ignorance on the origins of the lever, the two dials, and their
connections. I might try gain some comfort from this blissful ignorance. It never is and it never
was my role nor right to impugn the metaphysical anyway.

Or, I could decide to contemplate my reality more deeply. Is there a way to make some sense of it?
Can I comprehend my context without näıvely appealing to some super-nature? I am inevitably
drawn to reflect again on the implicit connection between the two dials (via the lever). Perhaps
it hints at something deeper, something richer. Could it be that, in fact, the two dial’s are in
general not connected, but that my experience of them being connected is just something unusual?
Perhaps my own sense of reality, although no less real, is just one thread woven amongst many in
an invisible tapestry.

If this is so, then instead of writing (2), I am free to recast a description of the state of my reality

5

as
x(s) = aâ + bb̂ = a(s)â + b(s)b̂ (3)

This now leaves me startled. My experience of my reality has not changed at all! I still have two
dials, â and b̂, which are mysteriously connected via the lever s. But now, surreptitiously, I am
beginning to imagine them as independent entities. By simply recording the state of my reality
using (3), I have allowed for the possibility for dial â and dial b̂ to be independent entities in
general, but to be connected in my case in particular. To record my own experience, I may happily
use either (2) or (3) because in my world, in a practical sense, both mean the same thing.

It seems that the narrow walkway of my world is beginning to widen!

The profundity of this sparkle of insight merits further consideration. A mysterious and intimate
connection between two qualitatively indistinguisable observed quantities hints at a richer, higher-
dimensional reality, in which mine is embedded as a particular case. And indeed I may reasonably
postulate the existence of this reality without ever being able to perceive it directly. This strikes
me as very important philosophical insight.

Whereas previously, I was impelled to ask how or why the two dials are connected, I now ask
why not? But this rather nonchalant retort comes with having now to contemplate a much richer
two-dimensional world in which my one-dimensional world is somehow embedded as a particular
case alongside many. In the general two-dimensional world, the two dials vary independently. But
in my particular case, they do not.

So if my reality is labelled as the t̄-th one, say, then I should write for the state of my reality:

x(s, t̄) = aâ + bb̂ = a(s, t̄)â + b(s, t̄)b̂ (4)

where the notation (s, t̄) serves to acknowledge that mine—the t̄-th one—is one amongst many.

Henceforth, I shall use the terms path and reality interchangeably. To be sure, my x(s, t̄) path differs
from, say, the x(s, t′) path. And since t̄ is merely a label, the value of t̄ must remain unchanged
throughout my path. That is, as I experience my reality, I can never expect to observe a change in
the value of t̄. And so for me, x(s) in (2) and (3) and x(s, t̄) in (4) all mean the same thing. The
experience of my own world has not changed.

A putative two-dimensional world is represented in Figure 3. The fact that the individual “t”-labelled
paths are circular segments in the diagram is not important here. The figure hints at something
crucial. There are numerous (in fact, infinitely many) unique paths, each with their own “t” label,
over which respective s-lever positions may vary. I imagine numerous corresponding dark rooms,
each with one s-lever and two dials.

But the two-dimensional world in which mine is embedded offers no qualitative character distinction
between lever values s and t, nor between dial readings a and b. So I am obliged to augment my
reality with an additional lever—a t-lever which is identical to the first, but which remains fixed
and unchangeable at the position t̄, as shown in Figure 4.

Now I am struck with a tantalising insight. If the two levers and dials are mutually indistinguisable,
there must exist another family of paths in the two-dimensional world for which the s-lever is fixed
and unchangeable and the t-lever is allowed to vary. If I could just unlock my t-lever and pull and
push on it while keeping my s-lever fixed at some position, I would be able to experience one such
path. And by manipulating my t-lever now, I would likely discover some new connection between
it and my two dials, just as I had done earlier with my s-lever.

If it so happened that in my dark room world, the s-lever was fixed and unchangeable at position s∗,
say, with the t-lever able to be manipulated, then everything in my reality would be identical to
my present one except for the different connections between the t-lever’s position and the two dials.
Furthermore, the state of that alternate reality would coincide with my present state whenever
s = s∗ and t = t̄.

In that alternate reality, following (3), I would be obliged to cast my state as

x(t) = aâ + bb̂ = a(t)â + b(t)b̂

6

â

b̂

a(s, t̄)

x(s, t̄)b(s, t̄)

a(s, t′)

x(s, t′)b(s, t′)

x(s∗, t̄)
t̄-reality

Figure 3: Putative two-dimensional âb̂ world represented as a family of one-dimensional
t-realities, of which my t̄-reality is but one amongst many “sibling” realities. The present
state of my own reality, which is represented by the position x(s, t̄) for some lever value s,
differs from the state of some other reality represented by the position x(s, t′). Through-
out my reality, t̄ remains unchanged.

But whereas my own present reality is labelled as t̄ with s varying, this alternate reality must
carry the label s∗ with t varying. So actually, the state of that reality would perhaps be better
represented with

x(s∗, t) = aâ + bb̂ = a(s∗, t)â + b(s∗, t)b̂ (5)

And in that reality x(t) and x(s∗, t) would mean the same thing. Comparing (4) with (5), it is
obvious that the two realities intersect whenever s = s∗ and t = t̄, and the coinciding state position
is x(s∗, t̄). This particular state position is shown in both Figures 3 and 5.

In that alternate s∗-labelled reality, I should have arrived at similar conclusions, that the presence of
the s-lever fixed at s∗, my ability to manipulate my t-lever, and the observed uncanny connections
between the two dial readings and t-lever position, all hint at my s∗-labelled reality as being but one
amongst many. And I would be forced to acknowledge the existence of a putative two-dimensional
world as represented in Figure 5.

But that is not my reality. And no matter how compelling the representations in Figures 3 and 5
may be, I am unable to experience the âb̂ world in full. The best I can do is to observe a connection
between the two dials via my manipulable s-lever.

7

s

s-Lever

t̄

t-Lever

a

Dial â

b

Dial b̂

a(s)

b(s)

Figure 4: A “dark room” world comprised of two levers and two dials. Observation of the
world reveals that the s-lever and the two dials are predictably and reliably connected,
and that the t-lever remains fixed at position t̄. The s-lever position determines the dial
readings. The connectedness is expressed with the two functions a(s) for dial â and b(s)
for dial b̂.

3 Pointer off my world

T
o recap, my existence is profoundly dark, silent and formless, save for two identical levers
and two identical dials. I can manipulate only one of the levers. The other appears fixed at

position t̄. Manipulating my first lever apparently affects both dials differently. But the effect is
predictable and reliable. This is uncanny and unexpected. To resist the temptation for fulsome
deference to the metaphysical, I must humbly accept that my own reality is a prosaic case of some
richer world in which the two dials are not coupled nor connected, and in which the two levers can
be manipulated independently.

So I place my s-lever at position s∗, say. And as I move it slightly away from s∗, I reflect on what
it would be like to move from this position by instead moving my t-lever away from position t̄.
Recall that the abovementioned s∗-labelled reality intersects mine when its t-lever is set at t̄ (Fig-
ure 5). I conclude that if that s∗-labelled reality path were to be able to interact with my own
t̄-labelled reality path, then my experience of the interaction would coincide with an experience in
the s∗-labelled reality when my s-lever was set at s∗ and its t-lever was set at t̄.

But what would constitute such an interaction? Since in my simple world I control my s-lever,
an interaction can only mean that my t-lever mysteriously moves. And from the perspective of
the other world, an interaction must mean that the other world’s s-lever mysteriously moves. And
because my t-lever has moved, I should expect the subsequent character of the connection between
my s-lever and my two dial readings to change in a surprising manner. Likewise, in the s∗-labelled
reality, the character of the connection between its t-lever and its two dial readings would also
change in a surprising manner.

So in my reality, as I move my s-lever from the position s∗ to position s∗ + ∆s, say, I observe that

8

â

b̂

a(s∗, t)

x(s∗, t)b(s∗, t)

a(s′, t)

x(s′, t)b(s′, t)

x(s∗, t̄)

s
∗ -re

ali
ty

Figure 5: The same putative two-dimensional âb̂ world of Figure 3, but now represented
as a family of one-dimensional s-realities, of which the s∗-reality is but one amongst
many “sibling” realities. The present state of reality, as represented by the position
x(s∗, t) for some lever value t, differs from the state of some other reality represented by
the position x(s′, t). Throughout the s∗-reality, s∗ remains fixed. It intersects my own
t̄-reality (Figure 3) whenever its t-lever is set at t̄, as shown by the position x(s∗, t̄).

my respective dial readings change from a to a + ∆ā, and from b to b + ∆b̄. The change in state
of my reality is therefore, using (4),

∆x(s∗, t̄) = x(s∗ + ∆s, t̄) − x(s∗, t̄)
=

(
a(s∗ + ∆s, t̄)â + b(s∗ + ∆s, t̄)b̂

)
−

(
a(s∗, t̄)â + b(s∗, t̄)b̂

)
=

(
a(s∗ + ∆s, t̄) − a(s∗, t̄)

)
â +

(
b(s∗ + ∆s, t̄) − b(s∗, t̄)

)
b̂

= ∆āâ + ∆b̄b̂

(6)

Similarly, were I to be living in the intersecting reality, I would move my t-lever from position t̄ to
position t̄ + ∆t, say, and observe the dial readings change from a to a + ∆a∗, and from b to b + ∆b∗.
And the change in state of reality would then be, using (5),

x(s∗, t̄ + ∆t) − x(s∗, t̄)
=

(
a(s∗, t̄ + ∆t)â + b(s∗, t̄ + ∆t)b̂

)
−

(
a(s∗, t̄)â + b(s∗, t̄)b̂

)
=

(
a(s∗, t̄ + ∆t) − a(s∗, t̄)

)
â +

(
b(s∗, t̄ + ∆t) − b(s∗, t̄)

)
b̂

= ∆a∗â + ∆b∗b̂

(7)

9

As I write this (in my mind, of course), I happen to notice that in my reality, the quantity

∆a∗∆ā + ∆b∗∆b̄ (8)

involves the changes in both my dials and the dials of the intersecting s∗-reality. And importantly,
if I was living in the intersecting s∗-reality, the corresponding quantity that I would have written
is

∆ā∆a∗ + ∆b̄∆b∗ (9)

The two sums are identical, provided that ∆a∗∆ā = ∆ā∆a∗ and ∆b∗∆b̄ = ∆b̄∆b∗. So (8) (or (9))
offers a simple and sensible measure of the intensity of any interaction when my s-lever is set at s∗

with my t-lever at t̄. And satisfyingly, the measure is the same in both realities.

To be sure, as I traverse my path of reality using my s-lever with my t-lever fixed at t̄, any
contemplation of interactions and interaction intensity is predicated both on the observed and
predictable effect that my s-lever has on both dials, and on the insightful conjecture that there
exists a richer world in which both levers may be manipulated independently.

But where is this richer world—an imperceptible world, “doubly” as expressive as mine? A world
hidden from view, yet all around, ubiquitous, immanent. It must be there because I have two
identical dials â and b̂ whose readings depend on my s-lever in two different yet predictable ways.

Can I somehow point to this richer world? With the interaction intensity measure (8) in mind, I
notice that

(∆b̄)∆ā + (−∆ā)∆b̄ = 0 (10)

provided of course that ∆b̄∆ā = ∆ā∆b̄. Comparing (10) with (8), the bracketed (∆b̄) and (−∆ā)
in (10) occupy, respectively, the same positions as ∆a∗ and ∆b∗ in (8). So with (7) in mind, this
suggests that with my s-lever set at s∗, if there was another s∗-labelled reality intersecting mine
whose change in state with its t-lever set at t̄ was

(∆b̄)â + (−∆ā)b̂ (11)

then my interaction intensity with it would be 0. That is, I would not experience any interaction
at all even though the intersecting reality is as viable as mine. Furthermore, since the change of
state (11) in the intersecting reality triggers an immeasurable interaction (10) in my reality, then
so does this change of state:

(λ∆b̄)â + (−λ∆ā)b̂ (12)

for any multiple λ. This is precisely because

(λ∆b̄)∆ā + (−λ∆ā)∆b̄ = λ
(
(∆b̄)∆ā + (−∆ā)∆b̄

)
= 0

There exists thus an entire family of realities which are likely to be every bit as real as my own,
but with which I am unable to interact in a measurable way. And this must surely be “where” the
extra dimension is “located!”

Roughly speaking then, to “be released” from the grip of my own one-dimensional reality, I must
place myself at some point of interest s∗, say, on my path of reality. In my simple world, that means
I must set my s-lever at position s∗. I must then traverse a short distance ∆s along my path by
moving my s-lever from position s∗ to s∗ + ∆s. The traversal will trigger dial reading changes ∆ā
and ∆b̄ on my dials â and b̂. And from these two changes, I construct the new two-dimensional
object (∆b̄)â + (−∆ā)b̂—a pointing device, if you wish—which “points” into the extra dimension
off my own reality path. Such a geometric construction is shown schematically in Figure 6. But
remember that in my reality, I cannot actually perceive such a construction.

10

b̂

â

t̄-reality

a(s∗, t̄)

x(s∗, t̄)b(s∗, t̄)

x(s∗ + ∆s, t̄)

∆ā

∆b̄

(∆b̄)â + (−∆ā)b̂

Figure 6: “Pointing” off my t̄-reality path at the position s∗ into the extra dimension.
On my t̄-labelled reality path I place myself at position s∗ by setting my s-lever at s∗.
The state of my one-dimensional reality is therefore x(s∗, t̄) = a(s∗, t̄)â + b(s∗, t̄)b̂ (Equa-
tion (4)). I move nearby to position s∗ +∆s and record the change in dial readings as ∆ā
and ∆b̄. To “point” into the extra dimension off my t̄-reality path, I construct the pointing
device (∆b̄)â + (−∆ā)b̂.

4 Landscape of worlds

O
ur own experience of the real world is obviously much richer than that of a lonely dark
room containing nothing more than one lever (or two) and two dials (Figure 2). Nevertheless,

the dark room is both conceivable and plausible. The room could be the (silent) engine room of a
train on a track. The s-lever could be a method for specifying a desired number of wheel rotations.
The first dial, â, displays the breadth distance covered by the engine room relative to some starting
position (the “origin”), a train station, say. And the second dial, b̂, displays the length distance
covered.

If it may be assumed that the train responds instantaneously to changes in the s-lever’s setting,
then the state of reality in Equation (2) fully captures the train driver’s one-dimensional experience
in the engine room. But (2) fails to capture the real broader two-dimensional landscape. However,
where (2) fails, (4) and (5) succeed, even though from the driver’s perspective, all three mean the
same thing. Indeed, the driver is free to choose from any of the three statements of his or her
reality. But (4) and (5) suggest something which the driver can never intuit, namely that the
driver’s one-dimensional reality is embedded in a two-dimensional world.

Equipped with the intuitive experience of our own three-dimensional spatial world, it takes little
effort for us to merge (4) and (5) into a single statement of reality in order to capture the full
extent of the landscape. For (4), we simply loosen the lock on the driver’s t-lever. And for (5), we
loosen the lock on the s-lever. By doing so we have tacitly released the train from its track! The
merged statement of reality is thus

x(s, t) = aâ + bb̂ = a(s, t)â + b(s, t)b̂ (13)

The simple dark room world with its t-lever loosened is shown in Figure 7. The full extent of
the resulting landscape is the set of all such positional states x(s, t), where each position in the
landscape is uniquely identifiable by the (s, t) numerical pair.

11

s

s-Lever

t

t-Lever

a

Dial â

b

Dial b̂

a(s, t)

b(s, t)

Figure 7: A “dark room” world comprised of two levers and two dials. The lock on
the t-lever has now been loosened so that it may be manipulated, just like the s-lever.
Both lever positions determine the reading on both dials, collectively. The connectedness
between levers and dials is expressed with the functions a(s, t) for dial â and b(s, t) for
dial b̂.

For us, the merging of (4) and (5) was easy and perhaps obvious. But there is in principle no
reason why the train driver could not have done likewise, even though he or she occupied a lower-
dimensional reality. All that the driver needed to do was to observe and ponder the uncanny
connection between his or her s-lever and the two dials, and arrive at (6) and (12), leading to the
sensible generalised conjecture (13).

5 Worldly epistemology

I
f you are mathematically inclined, then you might be familiar with objects such as (13),
as well as the notions of vectors, vector spaces, parametrised curves, parametrised surfaces,

orthonormal vector bases, degrees of freedom, tangent vectors, gradient one-forms, distance metrics,
invariance, and so on. And you might even be annoyed that recourse to such objects has not yet
been made.

The purpose thus far was to try conceptualise an increment in the number of dimensions of reality.
If this can be done for the increment from one dimension to two, and then from two to three, then
I might be better equipped to identify and intuit higher increments. And, too early a facile reliance
on established mathematical formalism hinders attainment of intuitive insights, because it is just
too easy to write objects such as (13) and then to manipulate them mechanically with little regard
for any deeper meaning.

However, notwithstanding, recourse to increased mathematical rigour at this point is inevitable
and necessary.

12

The abovementioned two-dimensional landscape is assumed to be the Euclidean set

E2 =
{
(a, b) | a, b ∈ R

}
If (a1, b1) ∈ E2 and (a2, b2) ∈ E2, then a distance d ∈ R between the two elements is defined by

d =
√

(a2 − a1)2 + (b2 − b1)2

The set E2 admits the vector space over the real numbers, spanned by the orthonormal vector
basis {â, b̂}, and parametrised with s and t, say, as

E2 =
{
x(s, t) = a(s, t)â + b(s, t)b̂ | s, t ∈ R, â and b̂ orthonomal.

}
(14)

such that if x, y ∈ E2 then (y − x) · (y − x) ∈ R. The one-dimensional world described above is
therefore simply the subset of E2

{
(a, b) | a = a(s, t̄), b = b(s, t̄), and s ∈ R, some t̄

}
And it admits a vector subspace which can can be viewed as an embedded path over E2

{
x(s, t̄) = a(s, t̄)â + b(s, t̄)b̂ | s ∈ R, some t̄

}
(15)

Since my “dark-room” one-dimensional t̄-reality is nothing more than the set of all positional
states x(s, t̄) in (4), the subspace (15) fully represents my reality.

Now instead of moving my s-lever by a small but finite amount from the s∗ position to arrive at (6),
I now move it by an infinitesimal amount from s∗, and record the rate of change of the state of my
reality. Doing so provides a tangent vector at s∗ as being the exact analogue of (6):

t(s∗, t̄) = ∂x(s, t)
∂s

∣∣∣∣
(s∗,t̄)

=
(

∂a(s, t)
∂s

â + ∂b(s, t)
∂s

b̂
)∣∣∣∣

(s∗,t̄)
(16)

In keeping with the argument leading to (10) and (11), an exact device which points into the extra
dimension off my reality path at the s∗ position must correspondingly be the normal vector

n(s∗, t̄) =
(

∂b(s, t)
∂s

â − ∂a(s, t)
∂s

b̂
)∣∣∣∣

(s∗,t̄)
(17)

This normal vector is a pointing device of interest because, analogous with (10), the corresponding
interaction intensity measure must vanish:

n(s∗, t̄) · t(s∗, t̄) =
(

∂b(s, t)
∂s

∂a(s, t)
∂s

â · â − ∂a(s, t)
∂s

∂b(s, t)
∂s

b̂ · b̂
)∣∣∣∣

(s∗,t̄)
= 0 (18)

That is, as I move along my path of reality by manipulating my s-lever around some position s∗, I
am able to discover an alternate reality path which intersects mine when my s = s∗ and its t = t̄.
That reality has just as much right to exist as mine, even though I cannot interact with it given
that the interaction intensity is zero. The alternate state of reality must be x(s∗, t) as in (5) with
its s-lever fixed at s∗ and its t-lever free to be manipulated. And my normal vector n(s∗, t̄) in (17)
points off my world into it!

Using the one-dimensional world as a starting point, the procedure for helping identify extra di-
mensionality is therefore summarised as:

1. The world is one-dimensional, comprised of a single variable entity, a, say:

x = aâ, a ∈ R (or C)

2. Observe that the world is not arbitrary, that there exists cause and effect, allowing for ma-
nipulation:

x = x(s) = a(s)â, s ∈ R

13

3. Observe another variable entity, b, say:

x(s) = (a(s), b) â, b ∈ R

4. Observe that a and b are mysteriously connected:

x(s) = (a(s), b(s)) â = (a, b) (s)â
⇒ x(a) = (a, B(a))â for some function B

5. Unable to account for the mysterious connection, postulate an increment in the number of
dimensions, and embed my reality inside a new two-dimensional world:

x(s) = a(s)â + b(s)b̂ or
x(a) = aâ + B(a)b̂ for some function B, or
x(b) = A(b)â + bb̂ for some function A

The new world is two-dimensional because it is spanned by the two-membered vector ba-
sis {â, b̂}. But my embedded reality is still one-dimensional.

6. Recognise that my own reality need not be particularly special. It is just one reality amongst
many. Arbitrarily label my reality as the t̄-th reality:

x(s, t̄) = a(s, t̄)â + b(s, t̄)b̂ or
x(a, b̄) = aâ + B(a)b̂ for some function B, or
x(ā, b) = A(b)â + bb̂ for some function A

7. Traverse my t̄-reality infinitesimally from position s∗, recording dial reading changes. Com-
pute a tangent vector, and from it a pointing device as the normal vector

n(s∗, t̄) =
(

∂b(s, t)
∂s

â − ∂a(s, t)
∂s

b̂
)∣∣∣∣

(s∗,t̄)

8. Sever the connection between my two observed quantities a and b by allowing each to vary
independently:

x(s, t) = a(s, t)â + b(s, t)b̂ or
x(a, b) = aâ + bb̂

6 Embedded landscaping

I
n my one-dimensional t̄-labelled reality, whatever s position I choose to fix my s-lever at, I
am able to calculate a corresponding normal vector n(s, t̄), as per (17). There are in fact

infinitely many such normal vectors, one for each s. I cannot help wondering if there is not some
relatively simple geometrical entity “out there” off my own world which is able to explain not only
the movement of my dials â and b̂ as a function of my s-lever, but also the apparent connection
between the dials via the lever. Are there one or more higher dimensional geometrical entities from
which my dial behaviours emerge naturally? If so, then the normal vector must surely play a role
because it points off my simple world, and it is only off my world where such an entity can be
found.

It is well known[2] that if a two-dimensional surface embedded in three-dimensional space R3 is
specified by some function c, say, then the gradient of that function is orthogonal to the level curve
of some contour path of the embedded surface. So if we can find some function c such that one
of the level curves uniquely matches the description of my one-dimensional world, then we would
have found such a higher dimensional goemetrical entity.

14

And importantly, because the description of my simple world exactly matches that of the level
curve, there is no reason not to consider the existence of the higher dimensional geometry. Of
course, any specification of the geometrical entity must not depend in any way on the specifics
of my own world. Otherwise my world would indirectly be attributed some special status amongst
many, and that special status would demand an explanation.

To affirm these ideas, let us consider two concrete examples. Suppose that my hypothetical specific
one-dimensional reality, which I have happened to label with t̄, is a segment of a circle, as shown
in Figures 3 and 6. To be sure, from the perspective in my t̄-reality, I don’t know—indeed, cannot
know—about such objects as circles. All I can do is observe and record the state of my t̄ reality,
which happens to be (c.f. (4), (3) and (2))

x(s, t̄) = a(s, t̄)â + b(s, t̄)b̂ =
(
A + t̄ cos s

)
â +

(
B + t̄ sin s

)
b̂ (19)

for some constants A, B and t̄. That is, as I “meander” through my world using my s-lever, I observe
my dial â’s reading varying with s as a(s, t̄) = A + t̄ cos s, with A and t̄ remaining constant. And
similarly for my dial b̂. And because the same constant t̄ is needed to record both dial readings, as
indicated in (19), I choose to label my reality using that same number. Of course, nothing prevents
me from labelling the state of my reality as x(s, A, B) or x(s, t̄, A, B), except that x(s, t̄) is simpler.

Furthermore, the presence of t̄ in the record of the response of both dials supports the assertion
that my reality is not special and may well be one amongst many. This makes applying Step 6 on
page 14 easier.

The state of reality (19) admits a vector subspace as an embedded path over E2 (c.f. (15)) as{
x(s, t̄) =

(
A + t̄ cos s

)
â +

(
B + t̄ sin s

)
b̂ | s ∈ R, some t̄

}
(20)

for some observed constants A and B. A tangent vector calculated at the lever position s is (c.f. (16))

t(s, t̄) = ∂x(s, t̄)
∂s

= −t̄ sin s â + t̄ cos s b̂

so that a normal vector at the same position is (c.f. (17))

n(s, t̄) = t̄ cos s â + t̄ sin s b̂

This normal vector was obtained simply be requiring that n · t vanish at the same dial position s.
This is Step 7 complete. Next, in fulfilment of Step 8, I sever the connection between my two dials
by allowing each to vary independently. I do this by contemplating a world in which t̄ may take on
a range of values, just like s (c.f. (14)):{

x(s, t) = (A + t cos s) â + (B + t sin s) b̂ | s, t ∈ R
}

My own world (20) is obviously just a special case of this. To think of my world as a level curve of
some contour path of some embedded surface, I write (19) as

x(s, t̄) = a(s, t̄)â + b(s, t̄)b̂ =
(
A + t̄ cos s

)
â +

(
B + t̄ sin s

)
b̂ + 0ĉ (21)

which is the level curve of the c-contour path

x(s, t̄) = a(s, t̄)â + b(s, t̄)b̂ =
(
A + t̄ cos s

)
â +

(
B + t̄ sin s

)
b̂ + cĉ (22)

for some constant value c. We therefore seek a two-dimensional surface embedded in three-
dimensional space for which the surface’s c-contour path is (22). We shall now consider two such
surfaces: the embedded sphere and the embedded hump.

15

Embedded sphere. Using notation consistent with this text, a sphere embedded in R3 of radius r
and centred at the position Aâ + Bb̂ + 0ĉ is the set

O(r) =
{
(a, b, c) | (a − A)2 + (b − B)2 + c2 = r2, some A, B ∈ R

}
A geometric representation of O is the set of positions

O(r) =
{
x(a, b) = aâ + bb̂ + c(a, b)ĉ | c2 = r2 − (a − A)2 − (b − B)2, some A, B ∈ R

}
Here x(a, b) is some position located on O. O is two-dimensional because there are only two
degrees of freedom, a and b. It is embedded in R3 because O is spanned by the orthonormal vector
basis {â, b̂, ĉ}.

To determine if (22) is some contour path of O, we must evaluate

x(a, b) = x(a(s, t̄), b(s, t̄))
= x(A + t̄ cos s, B + t̄ sin s)

= (A + t̄ cos s)â + (B + t̄ sin s)b̂ ±
√

r2 − t̄2ĉ
(23)

Since
√

r2 − t̄2 is constant with respect to variation in s, (23) is of the form (22). So my one-
dimensional t̄-reality (19) is exactly the level curve of the

√
r2 − t̄2-contour path of O. And the

value of t̄ which I happened to discover through simple observation turns out to be a selector for
the particular contour path with which my t̄-reality coincides, namely, the

√
r2 − t̄2-th one!

Next, the gradient of the c(a, b) function in (6), which specified O, is

∇(a,b)c = ∂c

∂a
â + ∂c

∂b
b̂ = 1

c

(
(a − A)â + (b − B)b̂

)
And evaluated at my position (22),

∇(a,b)c
∣∣∣
(A+t̄ cos s,B+t̄ sin s)

= ± 1√
r2 − t̄2

(
t̄ cos s â + t̄ sin s b̂

)
= ± 1√

r2 − t̄2
n(s, t̄)

which aligns with my normal vector n.

We may therefore happily assert the possibility that my world is nothing more than the level
curve of the

√
r2 − t̄2-th contour path on the sphere embedded in a three-dimensional universe.

The existence of a relatively simple geometrical object in R3, namely the O sphere, is a plausible
explanation for the surprising and unexpected observed character of my one-dimensional t̄-reality.

Embedded hump. Again, using notation consistent with this text, a hump embedded in R3 of
height h and centred at the position Aâ + Bb̂ + 0ĉ is the set

H(h) =
{
(a, b, c) | c = h

(A − a)2 + (B − b)2 + 1 , some A, B ∈ R
}

(24)

A geometric representation of H is

H(h) =
{
x(a, b) = aâ + bb̂ + c(a, b)ĉ | c = h

(A − a)2 + (B − b)2 + 1 , some A, B ∈ R
}

My t̄-reality is a contour path of H(h) because

x(a(s, t̄), b(s, t̄)) = x(A + t̄ cos s, B + t̄ sin s)

= (A + t̄ cos s)â + (B + t̄ sin s)b̂ + h

t̄2 + 1
ĉ

(25)

16

And since h/(t̄2 + 1) is constant with respect to variation in s, (25) is of the form (22). So in
the case of the hump H, my t̄-reality (19) is exactly the level curve of the h/(t̄2 + 1)-contour path
of H(h). And again, my choice of t̄ as a label for my reality turns out to select a specific contour
path of H.

The gradient of c(a, b) for H is

∇(a,b)c = 2c2

h

(
(A − a)â + (B − b)b̂

)
Evaluated at my position (22)

∇(a,b)c
∣∣∣
(A+t̄ cos s,B+t̄ sin s)

= − 2h

(t̄2 + 1)2

(
t̄ cos s â + t̄ sin s b̂

)
= − 2h

(t̄2 + 1)2 n(s, t̄)

which obviously aligns with n.

So my one-dimensional t̄-reality is simply the level curve of the h/(t̄2 +1)-contour path on the hump
embedded in a three-dimensional universe. And the surprising and unexpected observed character
of my reality is attributable to the existence of H embedded in R3.

The geometric representation of H is shown in Figure 8. In fact, the hypothetical family of t-realities
shown in Figure 3, and the family of s-realities in Figure 5, were all drawn computationally using H
as the assumed geometrical object.

If I can find an embedded surface for which my one-dimensional world is a contour path, or more
specifically, a level curve, then I can calculate a normal direction which “points into” the two-
dimensional space off my one-dimensional world. There are in fact infinitely many such surfaces,
and I shall call them embedded difference hypersurfaces.

Placing myself once again into the one-dimensional dark room consisting of two dials whose readings
are mysteriously connected, I apply Step 5 above as x(a) = aâ + B(a)b̂. To recap, the surprising
functional dependance of the second dial’s reading B on a is what I have observed about my reality.
From my one-dimensional perspective, the set

D1+2(B, M) =
{
(a, b, c) | c = c(a, b) = M(a, b)(b − B(a))

}
(26)

for some function M(a, b), is a two-dimensional hypersurface embedded in R3. Any point (a, b, c)
in D1+2 may be represented geometrically by the position

d(a, b) = aâ + bb̂ + c(a, b)ĉ = aâ + bb̂ + M(a, b)(b − B(a))ĉ

And since

d(a, B(a)) = aâ + B(a)b̂ + M(a, b) (B(a) − B(a)) ĉ
= aâ + B(a)b̂ + 0ĉ (0-level curve of D1+2)
= x(a)

the D1+2 set is an embedded difference hypersurface for which my one-dimensional reality path x(a)
is identically the 0-level curve of the D1+2 surface. I may therefore use the surface’s defining
function in (26) to construct a “pointing device” n(a) as being the function’s gradient at the
position d(a, B(a)):

n(a) = ∇(a,b)c(a, B(a))

= ∂c(a, B(a))
∂a

â + ∂c(a, B(a))
∂b

b̂

17

â

b̂

ĉ

Aâ + Bb̂ + hĉ

h

A

B

H(h)
h/(t̄2 + 1)-contour path

Figure 8: A geometrical representation of the embedded hump H(h) specified by (24).
Also shown is the h/(t̄2 + 1)-contour path of H(h). The level curve corresponding to
that contour path identifies with my observed t̄-reality as recorded in (21) and labelled as
such in Figure 3. The embedded hump and the contour path were calculated and drawn
computationally. (Refer to the annotated listing of the C source file, humpfigure.c, in
the appendix on page 35.)

Now

∂c(a, B(a))
∂a

= −dB(a)
da

M(a, B(a)) + (B(a) − B(a)) ∂M(a, B(a))
∂a

= −dB(a)
da

M(a, B(a))

And

∂c(a, B(a))
∂b

= M(a, B(a)) + (B(a) − B(a)) ∂M(a, B(a))
∂b

= M(a, B(a))

A pointing device in my one-dimensional world is therefore the gradient vector

n(a) = M(a, B(a))
[
−dB(a)

da
â + b̂

]
(27)

The device points off my world because it is orthogonal to it. That is, the gradient vector n
evaluated at my position a is orthogonal to any tangent vector dx(a)/da evaluated at the same

18

point. Using (5)

n(a) · dx(a)
da

= M(a, B(a))
[
−dB(a)

da
â + b̂

]
·
[
â + dB(a)

da
b̂

]
= M(a, B(a))

[
−dB(a)

da
â · â + dB(a)

da
b̂ · b̂

]
= 0

(28)

7 Acknowledgments

As always Mels, thanks for being such a close friend and supportive partner, and for showing an
interest in this work. I’m so glad that you reside in my embedded 0-contour volume!

19

8 Appendix—Computed drawing with LATEX, TikZ, pkTikZ and
PKREALVECTOR

In this section I demonstrate the combined use of LATEX, TikZ, my pkTikZ LATEX package[?], and
my C object class called PKREALVECTOR[3] to produce the three-dimensional schematic diagrams
included in this document.

Perhaps not suprisingly, the text in the document was typeset with LATEX. The figures were
typeset with TikZ. TikZ is software capability for typesetting graphical content directly in LATEX.
The specification and calculation of the three-dimensional landscapes in the figures were done
in the C programming language with the help of my PKREALVECTOR object class. PKREALVECTOR
provides a useful coding abstraction for instantiating and manipulating vectors in Rn. For example,
PKREALVECTOR’s API4 includes calls to perform the rotational coordinate transformations needed
to render on paper a two-dimensional projection of a three-dimensional landscape.

To typeset a figure, the LATEX source file for this document \input{}’s another external LATEX
source file. In the case of Figure 8 on page 18, the file was named humpfigure.tex. The file contains
the TikZ source code instructions to typeset the figure. The file was generated dynamically as the
output of the execution of the humpfigure.run program, which in turn was created by compiling
the C code located in the humpfigure.c file. See below for a listing of the humpfigure.c file.
Actually, by virtue of the presence of the Makefile file for the UNIX Make system, as listed below,
I simply needed to type make to create the final PDF-formatted document file, a copy of which you
are currently reading.

8.1 Typesetting the figures with LATEX, TikZ and pkTikZ

To incorporate TikZ’s capabilities during typesetting, I included the following lines of LATEX code
in the preamble of my LATEX “.tex” file:

\usepackage{pktikz}
\usetikzlibrary{calc}
%\usetikzlibrary{positioning}
%\usetikzlibrary{intersections}

TikZ was customised “globally” for all figures in the document using the following lines of LATEX
code:

1 \newcommand*\myWordMeaning[2]{\mbox{\emph{#1}---}#2}
2
3 \newcommand*\undr[1]{_{#1}}
4 \newcommand*\ud{\text d}
5 \newcommand*\deriv[2]{\frac{\ud #1}{\ud #2}}
6 \newcommand*\derivB[2]{\ud #1/\ud #2}
7 \newcommand*\parDeriv[2]{\frac{\partial #1}{\partial #2}}
8 \newcommand*\evalAt[2]{\left.#1\right|_{#2}}%
9 %\newcommand*\evalFromTo[3]{\left.#1\right|_{#2}ˆ{#3}}%

10
11 \newcommand*\one{\pktikzBasisVector{1}}
12 \newcommand*\two{\pktikzBasisVector{2}}
13 \newcommand*\three{\pktikzBasisVector{3}}
14
15 \newcommand*\vecx{\pktikzVector{x}}
16 \newcommand*\vecy{\pktikzVector{y}}
17 \newcommand*\vecc{\pktikzVector{c}}

4Application Programming Interface

20

18 \newcommand*\vecd{\pktikzVector{d}}
19 \newcommand*\vecg{\pktikzVector{g}}
20 \newcommand*\vecp{\pktikzVector{p}}
21 \newcommand*\vecn{\pktikzVector{n}}
22 \newcommand*\vect{\pktikzVector{t}}
23
24 \newcommand*\ahat{\pktikzUnitVector{a}}
25 \newcommand*\bhat{\pktikzUnitVector{b}}
26 \newcommand*\chat{\pktikzUnitVector{c}}
27
28 \newcommand*\tbar{\bar{t}}
29 \newcommand*\abar{\bar{a}}
30 \newcommand*\bbar{\bar{b}}
31 \newcommand*\sstar{sˆ*}
32 \newcommand*\astar{aˆ*}
33 \newcommand*\bstar{bˆ*}
34
35 \newcommand*\stbar{(s,\tbar)}
36
37 \newcommand*\sphereSet{\mathcal{O}}
38 \newcommand*\humpSet{\mathcal{H}}
39 \newcommand*\DcurveSet{\mathcal{D}}
40 \newcommand*\euclSet{\mathcal{E}}
41 \newcommand*\Etwo{\euclSetˆ2}
42 \newcommand*\diffSet{\mathcal{D}}
43 \newcommand*\diffSetOneTwo{\diffSetˆ{1+2}}
44
45 \newcommand*\vecComp[2]{\pktikzVector{#1}\cdot\pktikzBasisVector{#2}}
46
47 \newcommand*\realSet{\mathbb{R}}
48 \newcommand*\Rthree{\realSetˆ3}
49 \newcommand*\complexSet{\mathbb{C}}
50
51 %
52 % Definitions needed for the lever/dial diagrams begin.
53 %
54 \newcommand*\leverRadius{2.5}
55 \newcommand*\leverEndAngle{180}%{120}
56 \newcommand*\leverBigTick{0.5}
57 \newcommand*\leverSmallTick{0.25}
58 \newcommand*\leverHandleSize{0.4cm}
59 \newcommand*\dialRadius{\leverRadius}
60 \newcommand*\dialBigTick{0.4}
61 \newcommand*\dialSmallTick{0.2}
62 %
63 \newcommand*\typesetLever[5]{%
64 %
65 % Arguments:
66 %
67 % 1 : Lever internal name
68 % 2 : Lever positioning clause(s)
69 % 3 : Lever handle angle multiple
70 % 4 : Lever position label
71 % 5 : Lever name for label
72 %
73 % Lever arm.
74 %
75 \node(#1Hub)[#2,#1arm,circle,minimum size=\leverHubSize]{};
76 \path (#1Hub)
77 +(6*#3:\leverRadius+2*\leverBigTick) node(#1Nob)
78 [#1arm,fill,circle,
79 minimum size=\leverHandleSize]{};

21

80 \draw[#1arm] (#1Hub) -- (#1Nob);
81 %
82 % Lever meter.
83 %
84 \path (#1Hub) +(0:\leverRadius) node(#1Right){};
85 \draw[#1cover,myshadowed]
86 %\draw[#1cover,pktikzshadowed]
87 (#1Right)
88 arc[start angle=0,end angle=\leverEndAngle,radius=\leverRadius] node(#1End){};
89 \draw[#1meter]
90 foreach \angle in { 0, 6, ..., \leverEndAngle } {
91 (#1Hub)
92 +(\angle:\leverRadius-\leverSmallTick)
93 -- +(\angle:\leverRadius) };
94 \draw[#1meter]
95 foreach \angle in { 0, 30, ..., \leverEndAngle } {
96 (#1Hub)
97 +(\angle:\leverRadius-\leverBigTick)
98 -- +(\angle:\leverRadius) };
99 %

100 % This path is merely to improve the appearance of the above
101 % "myshadowed" paths.
102 %
103 \draw[#1meter]
104 (#1Right) arc[start angle=0,end angle=\leverEndAngle,radius=\leverRadius];
105 \path (#1Hub) +(90:\leverRadius) node(#1Top){};
106 \path (#1Hub)
107 +(6*#3:\leverRadius-\leverSmallTick) node[fill=white,rounded corners]{$#4$};
108 %
109 % Lever label.
110 %
111 \node(#1Label)[below=\leverBigTick] at (#1Hub) {$#5$-Lever};
112 %
113 % Full lever.
114 %
115 \node(#1)
116 [fit=(#1Right) (#1Nob) (#1Hub) (#1Top) (#1End) (#1Label)]
117 {};}
118 \newcommand*\typesetSlever{\typesetLever{slever}}
119 \newcommand*\typesetTlever{\typesetLever{tlever}}
120 %
121 \newcommand*\typesetDial[5]{%
122 %
123 % Arguments:
124 %
125 % 1 : Dial internal name
126 % 2 : Dial positioning clause(s)
127 % 3 : Dial needle angle multiple
128 % 4 : Dial position label
129 % 5 : Dial name for label
130 %
131 \node(#1Left)[#2]{};
132 \path (#1Left) ++(0:\dialRadius) coordinate(#1Hub);
133 \draw[dialcover]
134 (#1Hub)
135 -- ++(0:\dialRadius)
136 arc[start angle=0,end angle=180,radius=\dialRadius]
137 -- cycle;
138 \draw[dialmeter]
139 (#1Hub)
140 foreach \angle in { 15, 45, ..., 165 } {
141 +(\angle:\dialRadius-0.2-\dialBigTick)

22

142 -- +(\angle:\dialRadius-0.2) };
143 \draw[dialmeter]
144 (#1Hub)
145 foreach \angle in { 15, 20, ..., 165 } {
146 +(\angle:\dialRadius-0.2-\dialSmallTick)
147 -- +(\angle:\dialRadius-0.2) };
148 %
149 % The ’#1Right’ node is simply to capture a rightmost
150 % location for use below.
151 %
152 \path (#1Hub) +(0:\dialRadius) node(#1Right){};
153 %
154 % Dial needle.
155 %
156 \draw[dialneedle,myshadowed] (#1Hub) circle[radius=\dialHubSize];
157 \draw[dialneedle] (#1Hub) -- +(15+5*#3:\dialRadius-0.2-\dialBigTick);
158 \draw[fill,roomcolor] (#1Hub) circle[radius=\dialHubSize-\dialNeedleThick];
159 \path (#1Hub)
160 +(15+5*#3:\dialRadius-\dialBigTick) node[fill=white,rounded corners]{$#4$};
161 %
162 % Dial label.
163 %
164 \node(#1Label)[below right=\leverBigTick] at (#1Hub) {Dial $#5$};
165 %
166 % Full dial.
167 %
168 \node(#1)[fit=(#1Left) (#1Right) (#1Label)]{};}
169 \newcommand*\typesetAdial{\typesetDial{adial}}
170 \newcommand*\typesetBdial{\typesetDial{bdial}}
171 %
172 \newcommand*\typesetLeverDialConnection[4]{%
173 \draw[leverdialconnection,#1color]
174 (#1Hub)
175 to[out=#4,in=220] node[black,sloped,above]{$#3$}
176 (#2Hub);}
177 \newcommand*\typesetDarkRoom[1]{%
178 \begin{scope}[on background layer]
179 \node(room)[darkroom,fit=#1]{};
180 \end{scope}}
181 %
182 % Definitions needed for the lever/dial diagrams end.
183 %
184
185 \definecolor{contourpathcolor}{rgb}{0.15,0.3,0.5}
186 \definecolor{gradientpathcolor}{rgb}{0.7,0.3,0.2}
187 %
188 \colorlet{roomwallcolor}{darkgray}
189 %\colorlet{roomcolor}{lightgray}
190 \colorlet{roomcolor}{black!5}
191 \colorlet{slevercolor}{contourpathcolor}
192 \colorlet{tlevercolor}{gradientpathcolor}
193 \colorlet{dialcolor}{darkgray}
194
195 \newcommand*\leverArmThick{1.2pt}
196 \newcommand*\leverHubSize{0.3cm}
197 \newcommand*\dialNeedleThick{\leverArmThick}
198 \newcommand*\dialHubSize{0.5*\leverHubSize}
199
200 \tikzset{%inner sep=2pt,
201 %labelpointer/.style={->,
202 % pktikzdimension,
203 % text=black,

23

204 % pktikzshadowed},
205 %basisaxis/.style={thin,basiscolor},
206 %occludedsurfacepath/.style={surfacepath,occludedsurfacepathcolor},
207 contourpath/.style={smooth,contourpathcolor},
208 gradientpath/.style={smooth,gradientpathcolor},
209 %
210 % Styles for the lever and dial begin.
211 %
212 darkroom/.style={draw=roomwallcolor,
213 fill=roomcolor,
214 rounded corners,
215 inner sep=3ex},
216 sleverarm/.style={slevercolor,
217 draw,
218 line width=\leverArmThick},
219 slevermeter/.style={slevercolor},
220 slevercover/.style={slevermeter,thick},
221 tleverarm/.style={sleverarm,tlevercolor},
222 tlevermeter/.style={slevermeter,tlevercolor},
223 tlevercover/.style={slevercover,tlevercolor},
224 dialneedle/.style={->,
225 >=latex,
226 dialcolor,
227 draw,
228 fill,
229 line width=\dialNeedleThick},
230 %dialmeter/.style={dialcolor,thick},
231 dialmeter/.style={dialcolor},
232 dialcover/.style={dialmeter,thick},
233 leverdialconnection/.style={->,
234 >=stealth’,
235 shorten <=2pt,
236 shorten >=\dialHubSize+3pt}
237 %
238 % Styles for the lever and dial end.
239 %
240 }

The file humpfigure.tex, for example, contains TikZ code for Figure 8 on page 18. The humpfigure.
tex file was incorporated into the body of the text with an \input{} LATEX command, as follows:

\begin{figure}[h!]
\begin{center}

\input{humpfigure.tex}
\end{center}
\caption{...}
\label{humpfigure}

\end{figure}

8.2 Source code listings and the PKREALVECTOR C object class

The content of the various C source code files, which were used to create the TikZ code in the
corresponding “.tex” file, have all been primed to be typeset using the pkTechDoc “literate
programming” LATEX package.[4] pkTechDoc makes it possible to closely juxtapose LATEX code
and non-LATEX code both for typesetting and for compilation outside of LATEX.

8.2.1 The t-realities.c file

A listing of the t-realities.c file follows:

24

1 #include <pkfeatures.h>
2
3 #include <stddef.h>
4 #include <stdlib.h>
5 #include <stdio.h>
6 #include <unistd.h>
7 #include <stdarg.h>
8 #include <string.h>
9 #include <math.h>

10 #include <float.h>
11
12 #include <pkmemdebug.h>
13 #include <pkerror.h>
14 #include <pktypes.h>
15 #include <pkstring.h>
16 #include <pkmath.h>
17 #include <pkrealvector.h>
18
19 #include "sundry.h"
20 #include "hump.h"

21 const char *LOGFNAME = "/tmp/diagram.log";

22 static void _drawPath(const PKREALVECTOR **path, const int M)
23 {
24 int j;
25
26 if (!path || M < 1)
27 return;
28 //printf("%d positions.",M); return;
29
30 puts(" \\draw[emphvectorcolor] plot[smooth] coordinates {");
31 for (j = 0; j < M; j++) {
32 printf(" (" FLTFMT "," FLTFMT ")%s\n",
33 pkRealVectorGetComponent(path[j])[0],
34 pkRealVectorGetComponent(path[j])[1],
35 (j < M - 1) ? "" : " };");
36 }
37
38 return;
39 }

The drawCoordinates() private function below simply printfs a few TikZ commands for coor-
dinates.

40 static void _drawCoordinates(void)
41 {
42 puts(" %\\draw[help lines] (-0.2,-0.2) grid (7.1,5.1);");
43 puts(" %");
44 puts(" % Some coordinates.");
45 puts(" %");
46 puts(" \\pktikzSetUncircledPoint{(0,0)}{origin};");
47 return;
48 }

49 static void _drawBasisVectors(const PKREALVECTOR *e1,
50 const PKREALVECTOR *e2)
51 {
52 if (!e1 || !e2)
53 return;

25

54
55 puts(" %");
56 puts(" % Basisvectors.");
57 puts(" %");
58 printf(" \\draw[pktikzbasisvector,<->]\n"
59 " (" FLTFMT "," FLTFMT ") node[right] {$%s$} --\n"
60 " (origin) -- (" FLTFMT "," FLTFMT ") node[above] {$%s$};\n",
61 pkRealVectorGetComponent(e1)[0],
62 pkRealVectorGetComponent(e1)[1],
63 pkRealVectorGetName(e1),
64 pkRealVectorGetComponent(e2)[0],
65 pkRealVectorGetComponent(e2)[1],
66 pkRealVectorGetName(e2));
67
68 return;
69 }

70 static void _printfPosition(const char *prefix,
71 const PKREALVECTOR *posn,
72 const char *suffix)
73 {
74 if (!posn)
75 return;
76
77 printf("%s(" FLTFMT "," FLTFMT ")%s\n",
78 strIsNull(prefix) ? "" : prefix,
79 pkRealVectorGetComponent(posn)[0],
80 pkRealVectorGetComponent(posn)[1],
81 strIsNull(suffix) ? "" : suffix);
82
83 return;
84 }

The drawContourPath() private function prints to standard output a set of TikZ \draw commands
for drawing the z-contour path represented by the specified d array assumed to contain M entries.

85 static void _drawContourPath(PKREALVECTOR **d, const int M)
86 {
87 int j;
88
89 if (!d || M < 1)
90 return;
91
92 puts(" %");
93 printf(" %% " FLTFMT "-contour path.\n", pkRealVectorGetComponent(d[0])[2]);
94 puts(" %");
95 //puts(" \\draw[contourpath] plot[mark=*,mark size=0.7pt] coordinates {");
96 puts(" \\draw[contourpath] plot[] coordinates {");
97 for (j = 0; j < M; j++)
98 _printfPosition(" ", d[j], (j < M - 1) ? "" : " };");
99

100 return;
101 }

The drawHumpContourPaths() private function simply calls drawContourPath() for each set of
z-contour path positions represented by the array member dArr[i], i = 0, 1, 2, . . . , N − 1.

102 static void _drawHumpContourPaths(PKREALVECTOR ***dArr,
103 const int N,

26

104 const int M)
105 {
106 int i;
107
108 if (!dArr || N < 1 || M < 1)
109 return;
110
111 puts(" %");
112 printf(" %% %d contour paths with %d positions on each.\n", N, M);
113 for (i = 0; i < N; i++)
114 _drawContourPath(dArr[i], M);
115
116 return;
117 }

118 static void _drawXposition(const PKREALVECTOR *x,
119 const char *name,
120 const char *xName,
121 const char *yName)
122 {
123 if (!x || strIsNull(name) || strIsNull(xName) || strIsNull(yName))
124 return;
125
126 puts(" %");
127 puts(" % A position and its components.");
128 puts(" %");
129 printf(" \\draw[pktikzdimension]\n"
130 " (" FLTFMT ",0.0) node[below]{$%s$} --\n"
131 //" (" FLTFMT "," FLTFMT ") node[right,black,fill=white,rounded corners]{$%s$}"
132 " (" FLTFMT "," FLTFMT ") node[pktikzlabel,right]{$%s$}"
133 " coordinate[pktikzpoint] --\n"
134 " (0.0," FLTFMT ") node[left]{$%s$};\n",
135 pkRealVectorGetComponent(x)[0],
136 xName,
137 pkRealVectorGetComponent(x)[0], pkRealVectorGetComponent(x)[1],
138 name,
139 pkRealVectorGetComponent(x)[1],
140 yName);
141
142 return;
143 }

144 static void _drawXpositions(PKREALVECTOR ***dArr,
145 const int N,
146 const int M)
147 {
148 const int tbarReality = 2,
149 tprimeReality = 5;
150 PKREALVECTOR *commonx,
151 *p; /* Some arbitrary position on the ’tbarReality’ contour path. */
152
153 if (!dArr || N < 1 || M < 1)
154 return;
155
156 _drawXposition(dArr[tbarReality][M/8], "\\vecx\\stbar", "a\\stbar", "b\\stbar");
157 _drawXposition(dArr[tprimeReality][3*M/8], "\\vecx(s,t’)", "a(s,t’)", "b(s,t’)");
158
159 commonx = dArr[tbarReality][5*M/8];
160 printf(" \\draw[pktikzdimension]\n"
161 //" (" FLTFMT "," FLTFMT ") node[right,black,fill=white,rounded corners]{$%s$}"
162 " (" FLTFMT "," FLTFMT ") node[pktikzlabel,right]{$%s$}"

27

163 " coordinate[pktikzpoint];\n",
164 pkRealVectorGetComponent(commonx)[0], pkRealVectorGetComponent(commonx)[1],
165 "\\vecx(\\sstar,\\tbar)");
166
167 p = dArr[tbarReality][23*M/32];
168 printf(" \\path (" FLTFMT "," FLTFMT ")\n"
169 " node[contourpathcolor,fill=white]{$\\tbar$-reality};\n",
170 pkRealVectorGetComponent(p)[0], pkRealVectorGetComponent(p)[1]);
171
172 return;
173 }

Initialise the diagram’s primary landscape parameters, and then draw the landscape.

The diagram() private function below specifies the diagram’s landscape. It does this using the
PKREALVECTOR object class. The function prints to standard output a body of TikZ source code
which may be used to typeset the landscape in TEX.

174 static void _diagram(void)
175 {
176 const int N = 20, /* Number of contour paths. */
177 M = 20; /* Number of positions on each contour path. */
178 const PKMATHREAL deltat = 0.02; /* Parametrisation parameter value */
179 /* for next position on path. */
180 PKREALVECTOR *e1,
181 *e2,
182 ***dArr; /* Dynamic array of ’N’ dynamic arrays of */
183 /* ’M’ contour path positions. That is, */
184 /* an array of arrays of PKREALVECTORs. */
185

Prepare the objects in the landscape. Here we specify the two-dimensional landscape. Begin with
the {1̂, 2̂} vector basis.

186 e1 = pkRealVectorAlloc1("\\ahat", 3, basisVecLen, 0.0, 0.0);
187 e2 = pkRealVectorAlloc1("\\bhat", 3, 0.0, basisVecLen, 0.0);
188 pkRealVectorScale(e1,1.2);
189 pkRealVectorScale(e2,1.1);

Allocate and initialise as a dynamic array the set of N contour paths over H with each contour
path having M positions.

190 dArr = allocHumpContourArr(N, M, deltat);

Prepare the TikZ commands for typesetting the set of contour paths.

191 puts("\\begin{PkTikzpicture}[scale=1.6]");
192 _drawCoordinates();
193 _drawBasisVectors(e1,e2);
194 _drawHumpContourPaths(dArr, N, M);
195 _drawXpositions(dArr, N, M);
196 puts("\\end{PkTikzpicture}");

Finally, clean up.

28

197 pkRealVectorFree1(e1);
198 pkRealVectorFree1(e2);
199 freeHumpContourArr(dArr, N, M);
200
201 return;
202 }

203 int main(const int argc, const char *argv[])
204 {
205 _diagram();
206 //memPrintf();
207 exit(0);
208 }

29

8.2.2 The s-realities.c file

A listing of the s-realities.c file follows:

1 #include <pkfeatures.h>
2
3 #include <stddef.h>
4 #include <stdlib.h>
5 #include <stdio.h>
6 #include <unistd.h>
7 #include <stdarg.h>
8 #include <string.h>
9 #include <math.h>

10 #include <float.h>
11
12 #include <pkmemdebug.h>
13 #include <pkerror.h>
14 #include <pktypes.h>
15 #include <pkstring.h>
16 #include <pkmath.h>
17 #include <pkrealvector.h>
18
19 #include "sundry.h"
20 #include "hump.h"

21 const char *LOGFNAME = "/tmp/diagram.log";

22 static void _drawPath(const PKREALVECTOR **path, const int M)
23 {
24 int j;
25
26 if (!path || M < 1)
27 return;
28 //printf("%d positions.",M); return;
29
30 puts(" \\draw[pktikzemphvectorcolor] plot[smooth] coordinates {");
31 for (j = 0; j < M; j++) {
32 printf(" (" FLTFMT "," FLTFMT ")%s\n",
33 pkRealVectorGetComponent(path[j])[0],
34 pkRealVectorGetComponent(path[j])[1],
35 (j < M - 1) ? "" : " };");
36 }
37
38 return;
39 }

The drawCoordinates() private function below simply printfs a few TikZ commands for coor-
dinates.

40 static void _drawCoordinates(void)
41 {
42 puts(" %\\draw[help lines] (-0.2,-0.2) grid (7.1,5.1);");
43 puts(" %");
44 puts(" % Some coordinates.");
45 puts(" %");
46 puts(" \\pktikzSetUncircledPoint{(0,0)}{origin};");
47 return;
48 }

30

49 static void _drawBasisVectors(const PKREALVECTOR *e1,
50 const PKREALVECTOR *e2)
51 {
52 if (!e1 || !e2)
53 return;
54
55 puts(" %");
56 puts(" % Basisvectors.");
57 puts(" %");
58 printf(" \\draw[pktikzbasisvector,<->]\n"
59 " (" FLTFMT "," FLTFMT ") node[right] {$%s$} --\n"
60 " (origin) -- (" FLTFMT "," FLTFMT ") node[above] {$%s$};\n",
61 pkRealVectorGetComponent(e1)[0],
62 pkRealVectorGetComponent(e1)[1],
63 pkRealVectorGetName(e1),
64 pkRealVectorGetComponent(e2)[0],
65 pkRealVectorGetComponent(e2)[1],
66 pkRealVectorGetName(e2));
67
68 return;
69 }

70 static void _printfPosition(const char *prefix,
71 const PKREALVECTOR *posn,
72 const char *suffix)
73 {
74 if (!posn)
75 return;
76
77 printf("%s(" FLTFMT "," FLTFMT ")%s\n",
78 strIsNull(prefix) ? "" : prefix,
79 pkRealVectorGetComponent(posn)[0],
80 pkRealVectorGetComponent(posn)[1],
81 strIsNull(suffix) ? "" : suffix);
82
83 return;
84 }

The drawGradientPath() private function prints to standard output a set of TikZ \draw com-
mands for drawing the gradient path represented by the specified d array assumed to contain M
entries.

85 static void _drawGradientPath(PKREALVECTOR **d, const int M)
86 {
87 int j;
88
89 if (!d || M < 1)
90 return;
91
92 puts(" %");
93 printf(" %% (" FLTFMT "," FLTFMT ")-gradient path.\n",
94 pkRealVectorGetComponent(d[0])[0],
95 pkRealVectorGetComponent(d[0])[1]);
96 puts(" %");
97 //puts(" \\draw[gradientpath] plot[mark=*,mark size=0.7pt] coordinates {");
98 puts(" \\draw[gradientpath] plot[] coordinates {");
99 for (j = 0; j < M - 1; j++)

100 _printfPosition(" ", d[j], (j < M - 2) ? "" : " };");
101
102 return;
103 }

31

The drawHumpGradientPaths() private function simply calls drawGradientPath() for each set
of gradient path positions represented by the array member dArr[i], i = 0, 1, 2, . . . , N − 1.

104 static void _drawHumpGradientPaths(PKREALVECTOR ***dArr,
105 const int N,
106 const int M)
107 {
108 int i;
109
110 if (!dArr || N < 1 || M < 1)
111 return;
112
113 puts(" %");
114 printf(" %% %d gradient paths with %d positions on each.\n", N, M);
115 for (i = 0; i < N; i++)
116 _drawGradientPath(dArr[i], M);
117
118 return;
119 }

120 static void _drawXposition(const PKREALVECTOR *x,
121 const char *name,
122 const char *xName,
123 const char *yName)
124 {
125 if (!x || strIsNull(name) || strIsNull(xName) || strIsNull(yName))
126 return;
127
128 puts(" %");
129 puts(" % A position and its components.");
130 puts(" %");
131 printf(" \\draw[pktikzdimension]\n"
132 " (" FLTFMT ",0.0) node[below]{$%s$} --\n"
133 " (" FLTFMT "," FLTFMT ") node[pktikzlabel,right]{$%s$}"
134 " coordinate[pktikzpoint] --\n"
135 " (0.0," FLTFMT ") node[left]{$%s$};\n",
136 pkRealVectorGetComponent(x)[0],
137 xName,
138 pkRealVectorGetComponent(x)[0], pkRealVectorGetComponent(x)[1],
139 name,
140 pkRealVectorGetComponent(x)[1],
141 yName);
142
143 return;
144 }

145 static void _drawXpositions(PKREALVECTOR ***dArr,
146 const int N,
147 const int M)
148 {
149 const int sstarReality = 12,
150 sprimeReality = 18;
151 PKREALVECTOR *commonx,
152 *p; /* An arbitrary position on the ’sstarReality’ gradient path. */
153
154 if (!dArr || N < 1 || M < 1)
155 return;
156
157 _drawXposition(dArr[sstarReality][M/5],
158 "\\vecx(\\sstar,t)",
159 "a(\\sstar,t)",

32

160 "b(\\sstar,t)");
161 _drawXposition(dArr[sprimeReality][M/5],
162 "\\vecx(s’,t)",
163 "a(s’,t)",
164 "b(s’,t)");
165
166 commonx = dArr[sstarReality][5*M/12];
167 printf(" \\draw[pktikzdimension]\n"
168 " (" FLTFMT "," FLTFMT ") node[pktikzlabel,right]{$%s$}"
169 " coordinate[pktikzpoint];\n",
170 pkRealVectorGetComponent(commonx)[0], pkRealVectorGetComponent(commonx)[1],
171 "\\vecx(\\sstar,\\tbar)");
172
173 //p = dArr[sstarReality][0];
174 //printf(" \\path (" FLTFMT "," FLTFMT ")\n"
175 // " node[above right,gradientpathcolor]{$\\sstar$-reality};\n",
176 // pkRealVectorGetComponent(p)[0], pkRealVectorGetComponent(p)[1]);
177 p = dArr[sstarReality][M-2];
178 printf(" \\path (" FLTFMT "," FLTFMT ")\n"
179 " -- node[gradientpathcolor,fill=white,sloped]{$\\sstar$-reality}\n"
180 " (" FLTFMT "," FLTFMT ");\n",
181 pkRealVectorGetComponent(p)[0], pkRealVectorGetComponent(p)[1],
182 pkRealVectorGetComponent(commonx)[0], pkRealVectorGetComponent(commonx)[1]);
183
184 return;
185 }

Initialise the diagram’s primary landscape parameters, and then draw the landscape.

The diagram() private function below specifies the diagram’s landscape. It does this using the
PKREALVECTOR object class. The function prints to standard output a body of TikZ source code
which may be used to typeset the landscape in TEX.

186 static void _diagram(void)
187 {
188 const int N = 20, /* Number of gradient paths. */
189 M = 20; /* Number of positions on each gradient path. */
190 const PKMATHREAL deltaGamma = 0.2; /* Parametrisation parameter value */
191 /* for next position on path. */
192 PKREALVECTOR *e1,
193 *e2,
194 ***gArr; /* Dynamic array of ’N’ dynamic arrays of */
195 /* ’M’ gradient path positions. That is, */
196 /* an array of arrays of PKREALVECTORs. */
197

Prepare the objects in the landscape. Here we specify the two-dimensional landscape. Begin with
the {1̂, 2̂} vector basis.

198 e1 = pkRealVectorAlloc1("\\ahat", 3, basisVecLen, 0.0, 0.0);
199 e2 = pkRealVectorAlloc1("\\bhat", 3, 0.0, basisVecLen, 0.0);
200 pkRealVectorScale(e1,1.2);
201 pkRealVectorScale(e2,1.1);

Allocate and initialise as a dynamic array the set of N gradient paths over H with each gradient
path having M positions.

202 gArr = allocHumpGradientArr(N, M, humpX / 5.0, humpY / 5.0);

33

Prepare the TikZ commands for typesetting the set of gradient paths.

203 puts("\\begin{PkTikzpicture}[scale=1.6]");
204 _drawCoordinates();
205 _drawBasisVectors(e1,e2);
206 _drawHumpGradientPaths(gArr, N, M);
207 _drawXpositions(gArr, N, M);
208 puts("\\end{PkTikzpicture}");

Finally, clean up.

209 pkRealVectorFree1(e1);
210 pkRealVectorFree1(e2);
211 freeHumpGradientArr(gArr, N, M);
212
213 return;
214 }

215 int main(const int argc, const char *argv[])
216 {
217 _diagram();
218 //memPrintf();
219 exit(0);
220 }

34

8.2.3 The humpfigure.c file

A listing of the humpfigure.c file follows:

1 #include <pkfeatures.h>
2
3 #include <stddef.h>
4 #include <stdlib.h>
5 #include <stdio.h>
6 #include <unistd.h>
7 #include <stdarg.h>
8 #include <string.h>
9 #include <math.h>

10 #include <float.h>
11
12 #include <pkmemdebug.h>
13 #include <pkerror.h>
14 #include <pktypes.h>
15 #include <pkstring.h>
16 #include <pkmath.h>
17 #include <pkrealvector.h>
18
19 #include "sundry.h"
20 #include "hump.h"

21 const char *LOGFNAME = "/tmp/diagram.log";

The allocHumpContourPosn0() private function below allocates and initialises a position vector
on the z-contour path parametrised locally with t, starting at the specified position p1̂ + q2̂ + z3̂.
Obviously, the z-contour will pass through that position. A rationale for the local parametrisation
may be found in [3].

On success, return a pointer to the allocated and initialised PKREALVECTOR representing the position
vector. Otherwise return (PKREALVECTOR *)NULL. The function must be accompanied by a call to
freeHumpContourPosn0().

22 static PKREALVECTOR *_allocHumpContourPosn0(const char *name,
23 const PKREALVECTORREAL t,
24 const PKREALVECTORREAL p,
25 const PKREALVECTORREAL q,
26 const PKREALVECTORREAL z)
27 {
28 return(pkRealVectorAlloc1(name, 3,
29 (1.0 - 2.0 * t) * (p - humpX) +
30 2.0 * sqrt(t * (1.0 - t)) * (q - humpY) +
31 humpX,
32 (1.0 - 2.0 * t) * (q - humpY) -
33 2.0 * sqrt(t * (1.0 - t)) * (p - humpX) +
34 humpY,
35 z));
36 }

The freeHumpContourPosn0() private function is the complement to allocHumpContourPosn0().

37 static void _freeHumpContourPosn0(PKREALVECTOR *d)
38 {
39 if (d)
40 pkRealVectorFree1(d);
41 return;
42 }

35

If the specified p is not NULL, then the allocHumpContourPosn() private function below simply
returns with the result of the call to allocHumpContourPosn0(). Otherwise the function returns
(PKREALVECTOR *)NULL. The function must be accompanied by a call to freeHumpContourPosn().

43 static PKREALVECTOR *_allocHumpContourPosn(const char *name,
44 const PKREALVECTORREAL t,
45 const PKREALVECTOR *p)
46 {
47 if (!p)
48 return((PKREALVECTOR *)NULL);
49 return(_allocHumpContourPosn0(name,
50 t,
51 pkRealVectorGetComponent(p)[0],
52 pkRealVectorGetComponent(p)[1],
53 pkRealVectorGetComponent(p)[2]));
54 }

The freeHumpContourPosn() private function is the complement to allocHumpContourPosn().

55 static void _freeHumpContourPosn(PKREALVECTOR *d)
56 {
57 _freeHumpContourPosn0(d);
58 return;
59 }

The allocHumpContourPosnArr() private function allocates and initialises an array of z-contour
positions, beginning at the specified p position. So obviously, the z-contour will pass through p.
This function implements a subset of D(p, ∆t) which is discussed in detail in [5]. The function
composes pkRealVectorAlloc1(), allocHumpContourPosn(), amongst others.

On success, return a pointer to the allocated and initialised array of positions (PKREALVECTOR *)s.
Otherwise return (PKREALVECTOR **)NULL. The function must be accompanied by a call to
freeHumpContourPosnArr().

60 static PKREALVECTOR **_allocHumpContourPosnArr(const PKREALVECTOR *p,
61 const int positions,
62 const PKMATHREAL deltat)
63 {
64 PKREALVECTOR **d;
65
66 if (positions < 3)
67 return((PKREALVECTOR **)NULL);
68
69 d = (PKREALVECTOR **)calloc(positions + 1, sizeof(PKREALVECTOR *));
70 if (d) {
71
72 char *name;
73 int i;
74
75 d[0] = pkRealVectorAlloc1("\\vecdˆ0", 3,
76 pkRealVectorGetComponent(p)[0],
77 pkRealVectorGetComponent(p)[1],
78 pkRealVectorGetComponent(p)[2]);
79 for (i = 1; i < positions; i++) {
80 name = strAllocPrintf("\\vecdˆ{%d}", i);
81 d[i] = _allocHumpContourPosn(name, deltat, d[i-1]);
82 strFreePrintf(name);
83 }
84

36

85 }
86
87 return(d);
88 }

The freeHumpContourPosnArr() private function is the complement to allocHumpContourPosnArr().

89 static void _freeHumpContourPosnArr(PKREALVECTOR **d, const int positions)
90 {
91 if (d) {
92 int i;
93 for (i = 0; i < positions; i++)
94 _freeHumpContourPosn(d[i]);
95 free(d);
96 }
97 return;
98 }

The drawCoordinates() private function below simply printf()s a few TikZ commands for
coordinates.

99 static void _drawCoordinates(void)
100 {
101 puts(" %\\draw[help lines] (-0.2,-0.2) grid (7.1,5.1);");
102 puts(" %");
103 puts(" % Some coordinates.");
104 puts(" %");
105 puts(" \\pktikzSetUncircledPoint{(0,0)}{origin};");
106 return;
107 }

The drawBasisVectors() private function printf()s TikZ commands for typesetting the speci-
fied global vector basis {1̂, 2̂, 3̂}.

108 static void _drawBasisVectors(const PKREALVECTOR *e1,
109 const PKREALVECTOR *e2,
110 const PKREALVECTOR *e3)
111 {
112 if (e1 && e2 && e3) {
113 puts(" %");
114 puts(" % Basisvectors.");
115 puts(" %");
116 printf(" \\draw[pktikzbasisvector,<->]\n"
117 " (" FLTFMT "," FLTFMT ") node[below left] {$%s$} --\n"
118 " (origin) -- (" FLTFMT "," FLTFMT ") node[right] {$%s$};\n",
119 pkRealVectorGetComponent(e1)[0],
120 pkRealVectorGetComponent(e1)[1],
121 pkRealVectorGetName(e1),
122 pkRealVectorGetComponent(e2)[0],
123 pkRealVectorGetComponent(e2)[1],
124 pkRealVectorGetName(e2));
125 printf(" \\draw[pktikzbasisvector,pktikzshadowed,->]\n"
126 " (origin) -- (" FLTFMT "," FLTFMT ") node[above] {$%s$};\n",
127 pkRealVectorGetComponent(e3)[0],
128 pkRealVectorGetComponent(e3)[1],
129 pkRealVectorGetName(e3));
130 }
131
132 return;
133 }

37

The drawApex() private function printf()s TikZ commands for typesetting various coordinates
associated with H’s apex position a1̂ + b2̂ + z(a, b)3̂ = a1̂ + b2̂ + h3̂.

134 static void _drawApex(const PKREALVECTOR *a,
135 const PKREALVECTOR *a1,
136 const PKREALVECTOR *a2,
137 const PKREALVECTOR *a3,
138 const PKREALVECTOR *a12)
139 {
140 if (a && a1 && a2 && a3 && a12) {
141 puts(" %");
142 puts(" % Position ’apex’.");
143 puts(" %");
144 printf(" \\draw[pktikzdimension]\n"
145 " (origin) --\n"
146 " (" FLTFMT "," FLTFMT ") --\n"
147 " (" FLTFMT "," FLTFMT ") coordinate[pktikzpoint] node[above right]{$%s$} --\n"
148 " (" FLTFMT "," FLTFMT ") coordinate[pktikzpoint] node[left]{$%s$}\n"
149 " (" FLTFMT "," FLTFMT ") coordinate[pktikzpoint] node[above left]{$%s$} --\n"
150 " (" FLTFMT "," FLTFMT ") --\n"
151 " (" FLTFMT "," FLTFMT ") coordinate[pktikzpoint] node[above right]{$%s$};\n",
152 pkRealVectorGetComponent(a12)[0],
153 pkRealVectorGetComponent(a12)[1],
154 pkRealVectorGetComponent(a)[0],
155 pkRealVectorGetComponent(a)[1],
156 pkRealVectorGetName(a),
157 pkRealVectorGetComponent(a3)[0],
158 pkRealVectorGetComponent(a3)[1],
159 pkRealVectorGetName(a3),
160 pkRealVectorGetComponent(a1)[0],
161 pkRealVectorGetComponent(a1)[1],
162 pkRealVectorGetName(a1),
163 pkRealVectorGetComponent(a12)[0],
164 pkRealVectorGetComponent(a12)[1],
165 pkRealVectorGetComponent(a2)[0],
166 pkRealVectorGetComponent(a2)[1],
167 pkRealVectorGetName(a2));
168 }
169
170 return;
171 }

172 static void _printfPosition(const char *prefix,
173 const PKREALVECTOR *posn,
174 const char *suffix)
175 {
176 if (posn)
177 printf("%s(" FLTFMT "," FLTFMT ")%s\n",
178 strIsNull(prefix) ? "" : prefix,
179 pkRealVectorGetComponent(posn)[0],
180 pkRealVectorGetComponent(posn)[1],
181 strIsNull(suffix) ? "" : suffix);
182 return;
183 }

The drawFacet() private function printf()s TikZ commands for typesetting a quadrilateral
surface (or “facet”) specified by the four (PKREALVECTOR *) position vectors.

184 static void _drawFacet(const PKREALVECTOR *posn1,
185 const PKREALVECTOR *posn2,

38

186 const PKREALVECTOR *posn3,
187 const PKREALVECTOR *posn4,
188 const char *tikzStyle)
189 {
190 if (posn1 && posn2 && posn3 && posn4) {
191 printf(" \\path[%s]\n", strIsNull(tikzStyle) ? "draw" : tikzStyle);
192 printf(" (" FLTFMT "," FLTFMT ") -- "
193 "(" FLTFMT "," FLTFMT ") -- "
194 "(" FLTFMT "," FLTFMT ") -- "
195 "(" FLTFMT "," FLTFMT ") -- cycle;\n",
196 pkRealVectorGetComponent(posn1)[0], pkRealVectorGetComponent(posn1)[1],
197 pkRealVectorGetComponent(posn2)[0], pkRealVectorGetComponent(posn2)[1],
198 pkRealVectorGetComponent(posn3)[0], pkRealVectorGetComponent(posn3)[1],
199 pkRealVectorGetComponent(posn4)[0], pkRealVectorGetComponent(posn4)[1]);
200 }
201
202 return;
203 }

The drawSurfaceElement() private function printf()s TikZ commands for typesetting a surface
specified by the four cornern (PKREALVECTOR *) corner positions. The remaining specified midn
position vectors are assumed to lie on the desired path between two corner positions.

204 static void _drawSurfaceElement (const PKREALVECTOR *corner1,
205 const PKREALVECTOR *mid1,
206 const PKREALVECTOR *corner2,
207 const PKREALVECTOR *mid2,
208 const PKREALVECTOR *corner3,
209 const PKREALVECTOR *mid3,
210 const PKREALVECTOR *corner4,
211 const PKREALVECTOR *mid4,
212 const char *tikzStyle)
213 {
214 if (corner1 && corner2 && corner3 && corner4 &&
215 mid1 && mid2 && mid3 && mid4) {
216 printf(" \\path[%s]\n", strIsNull(tikzStyle) ? "draw" : tikzStyle);
217 printf(" plot[smooth] coordinates { (" FLTFMT "," FLTFMT ")"
218 "(" FLTFMT "," FLTFMT ")"
219 "(" FLTFMT "," FLTFMT ") } --\n",
220 pkRealVectorGetComponent(corner1)[0],
221 pkRealVectorGetComponent(corner1)[1],
222 pkRealVectorGetComponent(mid1)[0],
223 pkRealVectorGetComponent(mid1)[1],
224 pkRealVectorGetComponent(corner2)[0],
225 pkRealVectorGetComponent(corner2)[1]);
226 printf(" plot[smooth] coordinates { (" FLTFMT "," FLTFMT ")"
227 "(" FLTFMT "," FLTFMT ")"
228 "(" FLTFMT "," FLTFMT ") } --\n",
229 pkRealVectorGetComponent(corner2)[0],
230 pkRealVectorGetComponent(corner2)[1],
231 pkRealVectorGetComponent(mid2)[0],
232 pkRealVectorGetComponent(mid2)[1],
233 pkRealVectorGetComponent(corner3)[0],
234 pkRealVectorGetComponent(corner3)[1]);
235 printf(" plot[smooth] coordinates { (" FLTFMT "," FLTFMT ")"
236 "(" FLTFMT "," FLTFMT ")"
237 "(" FLTFMT "," FLTFMT ") } --\n",
238 pkRealVectorGetComponent(corner3)[0],
239 pkRealVectorGetComponent(corner3)[1],
240 pkRealVectorGetComponent(mid3)[0],
241 pkRealVectorGetComponent(mid3)[1],

39

242 pkRealVectorGetComponent(corner4)[0],
243 pkRealVectorGetComponent(corner4)[1]);
244 printf(" plot[smooth] coordinates { (" FLTFMT "," FLTFMT ")"
245 "(" FLTFMT "," FLTFMT ")"
246 "(" FLTFMT "," FLTFMT ") } -- cycle;\n",
247 pkRealVectorGetComponent(corner4)[0],
248 pkRealVectorGetComponent(corner4)[1],
249 pkRealVectorGetComponent(mid4)[0],
250 pkRealVectorGetComponent(mid4)[1],
251 pkRealVectorGetComponent(corner1)[0],
252 pkRealVectorGetComponent(corner1)[1]);
253 }
254
255 return;
256 }

The drawHump() private function printf()s TikZ commands for typesetting the hump surface H.

257 static void _drawHump(PKREALVECTOR ***posn,
258 const int Nx,
259 const int Ny)
260 {
261 int i,
262 j;
263
264 if (!posn)
265 return;
266
267 puts(" %");
268 puts(" % The hump’s cut-off edge.");
269 puts(" %");
270 puts(" \\draw[draw=pktikzsurfacedrawcolor]");
271 for (j = 0; j < Ny; j++)
272 _printfPosition(" ", posn[0][j], " --");
273 for (i = 0; i < Nx; i++)
274 _printfPosition(" ", posn[i][Ny-1], " --");
275 for (j = Ny-1; j >= 0; j--)
276 _printfPosition(" ", posn[Nx-1][j], " --");
277 for (i = Nx-1; i >= 0; i--)
278 _printfPosition(" ", posn[i][0], (i > 0) ? " --" : ";");
279
280 //puts(" %");
281 //puts(" % The hump.");
282 //puts(" %");
283 //for (i = 1; i < Nx - 1; i++) {
284 // puts(" \\draw[surface]");
285 // for (j = 0; j < Ny; j++)
286 // _printfPosition(" ", posn[i][j], (j < Ny - 1) ? "--" : ";");
287 //}
288 //puts(" %");
289 //for (j = 1; j < Ny - 1; j++) {
290 // puts(" \\draw[surface]");
291 // for (i = 0; i < Nx; i++)
292 // _printfPosition(" ", posn[i][j], (i < Nx - 1) ? "--" : ";");
293 //}
294
295 //puts(" %");
296 //puts(" % The hump.");
297 //puts(" %");
298 //for (i = 1; i < Nx - 1; i++) {
299 // //puts(" \\draw[surface] plot[smooth,mark=*,mark size=1pt] coordinates {");

40

300 // puts(" \\draw[surface] plot[smooth] coordinates {");
301 // for (j = 0; j < Ny; j++)
302 // _printfPosition(" ", posn[i][j], (j < Ny - 1) ? "" : "};");
303 //}
304 //puts(" %");
305 //for (j = 1; j < Ny - 1; j++) {
306 // puts(" \\draw[surface] plot[smooth] coordinates {");
307 // for (i = 0; i < Nx; i++)
308 // _printfPosition(" ", posn[i][j], (i < Nx - 1) ? "" : "};");
309 //}
310
311 //puts(" %");
312 //puts(" % The hump.");
313 //puts(" %");
314 //for (i = 0; i < Nx - 1; i++) {
315 // for (j = 0; j < Ny - 1; j++)
316 // _drawFacet(posn[i][j], posn[i][j+1], posn[i+1][j+1], posn[i+1][j],
317 // "surface");
318 //}
319
320 puts(" %");
321 puts(" % The hump.");
322 puts(" %");
323 for (i = 0; i < Nx - 2; i += 2) {
324 for (j = 0; j < Ny - 2; j += 2) {
325 _drawSurfaceElement(posn[i][j], posn[i][j+1],
326 posn[i][j+2], posn[i+1][j+2],
327 posn[i+2][j+2], posn[i+2][j+1],
328 posn[i+2][j], posn[i+1][j],
329 "hump");
330 }
331 }
332 _printfPosition(" \\path ",
333 posn[3*Nx/4][Ny/4],
334 " node[pktikzsurfacedrawcolor,below,fill=white,rounded corners]"
335 "{$\\humpSet(h)$};");
336
337 return;
338 }

The drawContourPath() private function printf()s TikZ commands for typesetting a subset of
the D(p, ∆t) set, which set is described in detail in [5]. The specified array d of Nd entries are
assumed to be the required di position vectors.[5]

339 static void _drawContourPath(PKREALVECTOR **d, const int Nd)
340 {
341 const int Md = realMin(Nd,14);
342 int i;
343
344 if (!d)
345 return;
346
347 puts(" %");
348 puts(" % ’z’-contour path ’d’.");
349 puts(" %");
350 //puts(" \\draw[pktikzsurfacepath] plot[mark=*,mark size=0.7pt] coordinates {");
351 puts(" \\draw[pktikzsurfacepath] plot coordinates {");
352 for (i = 0; i < Md; i++)
353 _printfPosition(" ", d[i], (i < Md - 1) ? "" : " };");
354 if (Md < Nd) {
355 //puts(" \\draw[occludedsurfacepath] plot[mark=*,mark size=0.6pt] coordinates {");

41

356 puts(" \\draw[occludedpath] plot coordinates {");
357 for (i = Md - 1; i < Nd; i++)
358 _printfPosition(" ", d[i], (i < Nd - 1) ? "" : " };");
359 }
360
361 _printfPosition(" \\path (",
362 d[8*Nd/24],
363 " node[contourpathcolor,\n"
364 " below]\n"
365 " {$h/(\\tbarˆ2+1)$-contour path};\n");
366
367 return;
368 }

The drawContourPathStart() private function printf()s TikZ commands for typesetting the
specified position p, as described in detail in [5]. This is the “local origin” position.

369 static void _drawContourPathStart(PKREALVECTOR *p)
370 {
371 if (!p)
372 return;
373
374 puts(" %");
375 puts(" % Contour start position.");
376 puts(" %");
377 printf(" \\path (" FLTFMT "," FLTFMT ") coordinate[pktikzpoint] node[below=2pt]{$%s$};\n",
378 pkRealVectorGetComponent(p)[0],
379 pkRealVectorGetComponent(p)[1],
380 pkRealVectorGetName(p));
381
382 return;
383 }

The diagram() private function below specifies the diagram’s three-dimensional landscape. It
does this primarily using the PKREALVECTOR object class.[3] The function prints to standard output
a body of TikZ source code which may be used to typeset the landscape in LATEX.

But before this function can do so, it must transform the landscape in such a way that what
TikZ typesets is a two-dimensional projection of the three-dimensional landscape. The function
rotationally transforms the landscape onto the space spanned by the {1̂′, 2̂′, 3̂′} orthonormal vector
basis set, where the 1̂′ and 2̂′ basis vectors lie in the plane of the page and 3̂′ is perpendicular to
the page, i.e., aligned with the reader’s line of sight.

In the function, the xLos, yLos and zLos are required for the rotational transformations. They are
the three coordinates of the “line-of-sight” vector under the {1̂, 2̂, 3̂} vector basis. The angle θ is the
tilt angle between 2̂ and the 2̂′3̂′ plane. The actual transformation is affected via calls resembling

pkRealVectorsUnderLineOfSightBasis1(xLos, yLos, zLos, theta,
e1, e2, e3,
...,
NULL)

For further details, refer to [5] and [6].

384 static void _diagram(void)
385 {
386 const int Nx = /*11*/ /*31*/ 51,
387 Ny = Nx,

42

388 Nd = 18;
389 const PKMATHREAL xLos = 2.0, /* Line-of-sight vector components. */
390 yLos = 1.2,
391 zLos = 1.0,
392 theta = -103.0 / 180.0 * M_PI; /* Angle for Line-of-sight transformations. */
393 //theta = -0.0 / 180.0 * M_PI; /* Angle for Line-of-sight transformations. */
394 PKMATHREAL u, v;
395 PKREALVECTOR *e1,
396 *e2,
397 *e3,
398 *apex, /* Apex of the hump. */
399 *apex1, /* Apex of the hump along 1. */
400 *apex2,
401 *apex3,
402 *apex12, /* Apex of the hump in the ’1-2’-plane. */
403 *p, /* Global position for a local origin on the hump. */
404 ***r, /* Dynamic array of positions on the hump. */
405 **d; /* Dynamic array of positions on the contour path */
406 /* passing thru ’p’. */
407 int i,
408 j;
409

Prepare the objects in the landscape.

Here we specify the three-dimensional landscape. Begin with the {1̂, 2̂, 3̂} vector basis.

410 e1 = pkRealVectorAlloc1("\\ahat", 3, basisVecLen, 0.0, 0.0);
411 e2 = pkRealVectorAlloc1("\\bhat", 3, 0.0, basisVecLen, 0.0);
412 e3 = pkRealVectorAlloc1("\\chat", 3, 0.0, 0.0, basisVecLen);
413 pkRealVectorScale(e1,1.1);
414 //pkRealVectorScale(e2,0.8);
415 pkRealVectorScale(e3,0.6);

The array r represents an Nx × Ny matrix of positions vectors on H.

416 r = allocHumpPosnArr(Nx, Ny, 0.12);

H’s apex position.

417 u = humpX;
418 v = humpY;
419 apex = pkRealVectorAlloc1("A\\ahat+B\\bhat+h\\chat", 3, u, v, hump(u,v));
420 apex1 = pkRealVectorAlloc1("A", 3, u, 0.0, 0.0);
421 apex2 = pkRealVectorAlloc1("B", 3, 0.0, v, 0.0);
422 apex3 = pkRealVectorAlloc1("h", 3, 0.0, 0.0, 0.8 * hump(u,v));
423 apex12 = pkRealVectorAlloc1("a12", 3, u, v, 0.0);

The local origin p. Here I cheat a bit by making recourse to a global property of H. Let
x = a + r cos θ and y = b + r sin θ. Then z(r) = h/(r2 + 1). Choose r such that z(r) = βz(0) = βh
for some β. This gives

x(β, θ) = a +
√

(1 − β)β cos θ, y(β, θ) = b +
√

(1 − β)β sin θ

424 u = humpX + sqrt((1.0 - 0.35) / 0.35) * cos(5.0 * M_PI / 6.0);
425 v = humpY + sqrt((1.0 - 0.35) / 0.35) * sin(5.0 * M_PI / 6.0);
426 p = pkRealVectorAlloc1("\\vecp", 3, u, v, hump(u,v));

43

Prepare an array of Nd sample positions, di, for H’s z-contour path passing through p. Refer to
the D(p, ∆t) set which is described in detail in [5].

427 d = _allocHumpContourPosnArr(p, Nd, 0.021);

Rotationally transform the landscape onto the space spanned by the “line-of-sight” basis. That is,
transform all vectors into “shadow” vectors which lie in the 1̂′2̂′ plane lying flat on the page.

428 for (i = 0; i < Nx; i++) {
429 for (j = 0; j < Ny; j++) {
430 pkRealVectorUnderLineOfSightBasis1(r[i][j],
431 xLos, yLos, zLos, theta);
432 }
433 }
434 pkRealVectorsUnderLineOfSightBasisV1(xLos, yLos, zLos, theta,
435 d, Nd);
436 if (0 == pkRealVectorsUnderLineOfSightBasis1(xLos, yLos, zLos, theta,
437 e1, e2, e3,
438 apex, apex1, apex2, apex3, apex12,
439 p,
440 NULL)) {
441

Prepare the TikZ commands for typesetting the projection of the three-dimensional landscape of H.

442 puts("\\begingroup");
443 puts("\\definecolor{occludedpathcolor}{rgb}{0.6,0.6,0.7}");
444 puts("\\begin{PkTikzpicture}[scale=1.8,");
445 puts(" hump/.style={pktikzsurfacelines,");
446 puts(" fill=pktikzsurfacefillcolor,");
447 puts(" opacity=0.5},");
448 puts(" occludedpath/.style={pktikzsurfacepath,occludedpathcolor}]");
449 _drawCoordinates();
450 _drawBasisVectors(e1, e2, e3);
451 _drawApex(apex, apex1, apex2, apex3, apex12);
452 _drawHump(r, Nx, Ny);
453 _drawContourPath(d, Nd);
454 //_drawContourPathStart(p);
455 puts("\\end{PkTikzpicture}");
456 puts("\\endgroup");
457
458 } else {
459
460 puts("ERROR: ’pkRealVectorsUnderLineOfSightBasis1()’ failed.");
461
462 }
463

Finally, clean up.

464 pkRealVectorFree1(e1);
465 pkRealVectorFree1(e2);
466 pkRealVectorFree1(e3);
467 freeHumpPosnArr(r, Nx, Ny);
468 pkRealVectorFree1(apex);
469 pkRealVectorFree1(apex1);
470 pkRealVectorFree1(apex2);
471 pkRealVectorFree1(apex3);

44

472 pkRealVectorFree1(apex12);
473 pkRealVectorFree1(p);
474 _freeHumpContourPosnArr(d,Nd);
475
476 return;
477 }

478 int main(const int argc, const char *argv[])
479 {
480 _diagram();
481 exit(0);
482 }

45

8.2.4 The hump.h and hump.c files

The hump.h, hump.c, sundry.h and sundry.c files C source files contain common code definitions.
A listing of the hump.h file follows:

1 #ifndef _HUMP
2 #define _HUMP

Inclusions.

3 #include <math.h> /* For ’M_PI’. */
4 #include <pkmath.h>
5 #include <pkrealvector.h>

Function declarations.

6 extern PKMATHREAL hump(const PKMATHREAL x, const PKMATHREAL y);
7 extern PKREALVECTOR ***allocHumpPosnArr(const int xPosns,
8 const int yPosns,
9 const PKMATHREAL alpha);

10 extern void freeHumpPosnArr(PKREALVECTOR ***posn,
11 const int xPosns,
12 const int yPosns);
13 extern PKREALVECTOR *allocHumpContourPosn0(const char *name,
14 const PKREALVECTORREAL t,
15 const PKREALVECTORREAL p,
16 const PKREALVECTORREAL q,
17 const PKREALVECTORREAL z);
18 extern void freeHumpContourPosn0(PKREALVECTOR *d);
19 extern PKREALVECTOR *allocHumpContourPosn(const char *name,
20 const PKREALVECTORREAL t,
21 const PKREALVECTOR *p);
22 extern void freeHumpContourPosn(PKREALVECTOR *d);
23 extern PKREALVECTOR **allocHumpContourPosnArr(const PKREALVECTOR *p,
24 const int M,
25 const PKMATHREAL deltat);
26 extern void freeHumpContourPosnArr(PKREALVECTOR **d, const int M);
27 extern PKREALVECTOR ***allocHumpContourArr(const int N,
28 const int M,
29 const PKMATHREAL deltat);
30 extern void freeHumpContourArr(PKREALVECTOR ***contourArr,
31 const int N,
32 const int M);
33 extern PKREALVECTOR *allocHumpGradientPosn0(const char *name,
34 const PKREALVECTORREAL gamma,
35 const PKREALVECTORREAL p,
36 const PKREALVECTORREAL q);
37 extern void freeHumpGradientPosn0(PKREALVECTOR *d);
38 extern PKREALVECTOR *allocHumpGradientPosn(const char *name,
39 const PKREALVECTORREAL gamma,
40 const PKREALVECTOR *p);
41 extern void freeHumpGradientPosn(PKREALVECTOR *d);
42 extern PKREALVECTOR **allocHumpGradientPosnArr(const PKREALVECTOR *p,
43 const int M);
44 extern void freeHumpGradientPosnArr(PKREALVECTOR **d, const int M);
45 extern PKREALVECTOR ***allocHumpGradientArr(const int N,
46 const int M,
47 const PKREALVECTORREAL px,
48 const PKREALVECTORREAL py);

46

49 extern void freeHumpGradientArr(PKREALVECTOR ***gradientArr,
50 const int N,
51 const int M);

Global variable definitions.

52 extern const PKMATHREAL basisVecLen;
53 extern const PKMATHREAL humpHeight,
54 humpX,
55 humpY;
56 #endif

47

A listing of the hump.c file follows:

1 #include "hump.h"
2
3 #include <pkfeatures.h>
4
5 #include <stddef.h>
6 #include <stdlib.h>
7 #include <stdio.h>
8 #include <unistd.h>
9 #include <stdarg.h>

10 #include <string.h>
11 #include <math.h>
12 #include <float.h>
13
14 #include <pkmemdebug.h>
15 #include <pkerror.h>
16 #include <pktypes.h>
17 #include <pkstring.h>
18 #include <pkmath.h>
19 #include <pkrealvector.h>

Non-normalised length of the vectors 1̂, 2̂ and 3̂.

20 const PKMATHREAL basisVecLen = 6.0;

Some defining parameters for the hump H.

21 const PKMATHREAL humpHeight = 0.6 * basisVecLen,
22 humpX = 0.65 * basisVecLen, /*humpX = 0.6 * basisVecLen,*/
23 humpY = 0.55 * basisVecLen; /*humpY = 0.5 * basisVecLen;*/

The hump() function below simply returns the value z(x, y) of the constitutive equation for the
hump H centred at the position a1̂ + b2̂:

H(h, a, b) =
{
(x, y, z) | z = h

(x − a)2 + (y − b)2 + 1
}

(29)

24 PKMATHREAL hump(const PKMATHREAL x, const PKMATHREAL y)
25 {
26 return(humpHeight / ((x - humpX) * (x - humpX) +
27 (y - humpY) * (y - humpY) +
28 1.0));
29 }

The allocHumpPosnArr() function allocates and initialises a two-dimensional array of position
vectors corresponding to points on H. The function composes pkRealVectorAlloc1() and hump(),
amongst others. On success, the function returns a (PKREALVECTOR ***) pointer to the allocated
and initialised array of position vectors. Otherwise it returns (PKREALVECTOR ***)NULL. The
function must be accompanied by a call to freeHumpPosnArr().

The subset [xmin, xmax][ymin, ymax] of the 1̂2̂-plane is required in this function. To compute the
subset, we set r2 = (x − a)2 + (y − b)2, and choose r such that z(r) = αz(0) = αh for some
specified α. This gives

xmin = a −
√

(1 − α)/α, xmax = a +
√

(1 − α)/α

ymin = b −
√

(1 − α)/α, ymax = b +
√

(1 − α)/α
(30)

48

30 PKREALVECTOR ***allocHumpPosnArr(const int xPosns,
31 const int yPosns,
32 const PKMATHREAL alpha)
33 {
34 PKREALVECTOR ***posn;
35
36 posn = (PKREALVECTOR ***)calloc(xPosns + 1, sizeof(PKREALVECTOR **));
37 if (posn) {
38 const PKMATHREAL xMin = humpX - sqrt((1.0 - alpha) / alpha),
39 xMax = humpX + sqrt((1.0 - alpha) / alpha),
40 yMin = humpY - sqrt((1.0 - alpha) / alpha),
41 yMax = humpY + sqrt((1.0 - alpha) / alpha);
42 PKMATHREAL p,
43 q;
44 char *name;
45 int i,
46 j;
47 for (i = 0; i < xPosns; i++) {
48 posn[i] = (PKREALVECTOR **)calloc(yPosns + 1, sizeof(PKREALVECTOR *));
49 p = xMin + (double)i / (double)(xPosns-1) * (xMax - xMin);
50 for (j = 0; j < yPosns; j++) {
51 name = strAllocPrintf("\\pktikzVector{r}_{%d%d}", i, j);
52 q = yMin + (double)j / (double)(yPosns-1) * (yMax - yMin);
53 posn[i][j] = pkRealVectorAlloc1(name, 3, p, q, hump(p,q));
54 strFreePrintf(name);
55 }
56 }
57 }
58
59 return(posn);
60 }

The freeHumpPosnArr() function is the complement to allocHumpPosnArr().

61 void freeHumpPosnArr(PKREALVECTOR ***posn,
62 const int xPosns,
63 const int yPosns)
64 {
65 if (posn) {
66 int i,
67 j;
68 for (i = 0; i < xPosns; i++) {
69 for (j = 0; j < yPosns; j++) {
70 pkRealVectorFree1(posn[i][j]);
71 posn[i][j] = (PKREALVECTOR *)NULL;
72 }
73 free(posn[i]);
74 posn[i] = (PKREALVECTOR **)NULL;
75 }
76 free(posn);
77 }
78
79 return;
80 }

The allocHumpContourPosn0() function below allocates and initialises a position vector on the
z-contour path parametrised with t using a locally-centric “regular” parametrisation, starting at
the specified position p = p1̂+q2̂+z3̂. Obviously, the z-contour will pass through p. This function

49

implements:

d(t; p) =
(

(1 − 2t)(p · 1̂ − a) + 2
√

t(1 − t)(p · 2̂ − b) + a

)
1̂

+
(

(1 − 2t)(p · 2̂ − b) − 2
√

t(1 − t)(p · 1̂ − a) + b

)
2̂

+ (p · 3̂) 3̂, 0 ≤ t ≤ 1

(31)

On success, the function returns a pointer to the allocated and initialised PKREALVECTOR repre-
senting the position vector. Otherwise it returns (PKREALVECTOR *)NULL. The function must be
accompanied by a call to freeHumpContourPosn0().

81 PKREALVECTOR *allocHumpContourPosn0(const char *name,
82 const PKREALVECTORREAL t,
83 const PKREALVECTORREAL p,
84 const PKREALVECTORREAL q,
85 const PKREALVECTORREAL z)
86 {
87 return(pkRealVectorAlloc1(
88 name,
89 3,
90 (1.0 - 2.0 * t) * (p - humpX)
91 - 2.0 * sqrt(t * (1.0 - t)) * (q - humpY) + humpX,
92 (1.0 - 2.0 * t) * (q - humpY)
93 + 2.0 * sqrt(t * (1.0 - t)) * (p - humpX) + humpY,
94 z));
95 }

The freeHumpContourPosn0() function is the complement to allocHumpContourPosn0().

96 void freeHumpContourPosn0(PKREALVECTOR *d)
97 {
98 if (d)
99 pkRealVectorFree1(d);

100 return;
101 }

If the specified (PKREALVECTOR *) pointer p is not NULL, then the allocHumpContourPosn() func-
tion below simply returns with the result of the call:

allocHumpContourPosn0(name,
t,
pkRealVectorGetComponent(p)[0],
pkRealVectorGetComponent(p)[1],
pkRealVectorGetComponent(p)[2])

Otherwise the function returns (PKREALVECTOR *)NULL. The function must be accompanied by a
call to freeHumpContourPosn().

102 PKREALVECTOR *allocHumpContourPosn(const char *name,
103 const PKREALVECTORREAL t,
104 const PKREALVECTOR *p)
105 {
106 if (!p)
107 return((PKREALVECTOR *)NULL);
108 return(allocHumpContourPosn0(name,
109 t,
110 pkRealVectorGetComponent(p)[0],
111 pkRealVectorGetComponent(p)[1],
112 pkRealVectorGetComponent(p)[2]));
113 }

50

The freeHumpContourPosn() function is the complement to allocHumpContourPosn().

114 void freeHumpContourPosn(PKREALVECTOR *d)
115 {
116 if (d)
117 freeHumpContourPosn0(d);
118 return;
119 }

The allocHumpContourPosnArr() function allocates and initialises an array of M z-contour path
positions beginning at the specified p position. So obviously, the z-contour will pass through p.
This function implements a finite subset of the D(p, ∆t) set:

D(p, ∆t) =
{

d(t; di) =
[
(1 − 2t)(di · 1̂ − a) + 2

√
t(1 − t)(di · 2̂ − b) + a

]
1̂

+
[
(1 − 2t)(di · 2̂ − b) − 2

√
t(1 − t)(di · 1̂ − a) + b

]
2̂

+ (p · 3̂) 3̂

| di = d(∆t; di−1); d0 = p; i = 1, 2, 3, . . . ; 0 ≤ t ≤ 1
}

On success, the function return a pointer to the allocated and initialised array of M (PKREALVECTOR *)s.
Otherwise it returns (PKREALVECTOR **)NULL. The function must be accompanied by a call to
freeHumpContourPosnArr().

120 PKREALVECTOR **allocHumpContourPosnArr(const PKREALVECTOR *p,
121 const int M,
122 const PKMATHREAL deltat)
123 {
124 PKREALVECTOR **d;
125
126 if (!p || M < 1 || deltat < 0.0 || deltat > 1.0)
127 return((PKREALVECTOR **)NULL);
128
129 d = (PKREALVECTOR **)calloc(M + 1, sizeof(PKREALVECTOR *));
130 if (d) {
131
132 char *name;
133 int j;
134
135 d[0] = pkRealVectorAlloc1("\\vecdˆ0", 3,
136 pkRealVectorGetComponent(p)[0],
137 pkRealVectorGetComponent(p)[1],
138 pkRealVectorGetComponent(p)[2]);
139 for (j = 1; j < M; j++) {
140 name = strAllocPrintf("\\vecdˆ{%d}", j);
141 d[j] = allocHumpContourPosn(name, deltat, d[j-1]);
142 strFreePrintf(name);
143 }
144
145 }
146
147 return(d);
148 }

The freeHumpContourPosnArr() function is the complement to allocHumpContourPosnArr().

149 void freeHumpContourPosnArr(PKREALVECTOR **d, const int M)
150 {

51

151 if (d) {
152 int j;
153 for (j = 0; j < M; j++)
154 freeHumpContourPosn(d[j]);
155 free(d);
156 }
157 return;
158 }

The allocHumpContourArr() function allocates and initialises an array of N pointers to arrays of
M z-contour path positions. The starting position of each such array of z-contour path positions
is taken to be on a path over H beginning arbitrarily at p0 = 1

5a1̂ + 1
5b2̂ + z(1

5a, 1
5b)3̂ and ending

at pN−1 = a1̂ + b2̂ + z(a, b)3̂, and where along that path, y/x = b/a. From (29), it is easy to show
then that

x = x(z) =

1 ±

√
h/z − 1
a2 + b2

 a

y = y(x(z)) = bx(z)
a

Also, along that path we identify the N z-values

zi = z0 + i

N − 1(zN−1 − z0), i = 0, 1, 2, . . . , N − 1

This then provides starting positions for the N z-contour paths as

{pi = x(zi)1̂ + y(x(zi))2̂ + zi3̂ | zi = z0 + i

N − 1(zN−1 − z0), i = 0, 1, 2, . . . , N − 1}

Once a PKREALVECTOR representing pi has been allocated and initialised with a call to
pkRealVectorAlloc1(), the i-th array of M z-contour path positions is allocated and initialised
with the call to allocHumpContourPosnArr(p,M,deltat).

On success, the function return a (PKREALVECTOR ***) pointer to the allocated and initialised array
of N (PKREALVECTOR **) pointers to arrays of M (PKREALVECTOR *) z-contour path positions.
Otherwise it returns (PKREALVECTOR ***)NULL. The function must be accompanied by a call to
freeHumpContourArr().

159 PKREALVECTOR ***allocHumpContourArr(const int N,
160 const int M,
161 const PKMATHREAL deltat)
162 {
163 PKREALVECTOR ***contourArr;
164
165 if (N < 1 || M < 1)
166 return((PKREALVECTOR ***)NULL);
167
168 contourArr = (PKREALVECTOR ***)calloc(N + 1, sizeof(PKREALVECTOR **));
169 if (contourArr) {
170
171 PKREALVECTORREAL firstz, lastz; /* z-coordinates of first and last position. */
172 int i;
173
174 firstz = hump(humpX / 5.0, humpY / 5.0);
175 lastz = hump(humpX, humpY);
176
177 for (i = 0; i < N; i++) {
178
179 PKREALVECTORREAL px,

52

180 py,
181 pz;
182 PKREALVECTOR *p;
183 char *name;
184
185 name = strAllocPrintf("\\vecp_%d", i);
186 pz = firstz + (PKREALVECTORREAL)i / (PKREALVECTORREAL)(N - 1)
187 * (lastz - firstz);
188 px = humpX * (1.0 - sqrt((humpHeight / pz - 1.0)
189 / (humpX * humpX + humpY * humpY)));
190 py = humpY / humpX * px;
191 p = pkRealVectorAlloc1(name, 3, px, py, pz);
192
193 contourArr[i] = allocHumpContourPosnArr(p, M, deltat);
194
195 strFreePrintf(name);
196 pkRealVectorFree1(p);
197
198 }
199
200 }
201
202 return(contourArr);
203 }

The freeHumpContourArr() function is the complement to allocHumpContourArr().

204 void freeHumpContourArr(PKREALVECTOR ***contourArr,
205 const int N,
206 const int M)
207 {
208 if (contourArr) {
209 int i;
210 for (i = 0; i < N; i++) {
211 if (contourArr[i]) {
212 freeHumpContourPosnArr(contourArr[i], M);
213 contourArr[i] = (PKREALVECTOR **)NULL;
214 }
215 }
216 free(contourArr);
217 }
218 return;
219 }

The allocHumpGradientPosn0() function below allocates and initialises a position vector on the
(p, q)-gradient path parametrised with γ, starting at the specified position p = p1̂ + q2̂ + z(p, q)3̂.
Obviously, the gradient will pass through p. The function implements the specific parametrisation

g(γ; p, q) = g1(γ; p, q)1̂ + g2(γ; p, q)2̂ + z(g1, g2)3̂ (32)

with
g1(γ; p, q) = p + γ(a − p), g2(γ; p, q) = b + q − b

p − a
(g1(γ; p, q) − a) for p ̸= a (33)

and
g1(γ; p, q) = a, g2(γ; p, q) = q + γ(b − q) for p = a (34)

It is easy to verify that g(0; p, q) = p1̂+q2̂+z(p, q)3̂, and that g(1; p, q) = a1̂+b2̂+h3̂, as expected.

53

Case p ̸= a. The parametrisation (32) was obtained following the recipe described in my article
“A study of surfaces embedded in R3”. From (29), a gradient vector evaluated at the position
p1̂ + q2̂ + z(p, q)3̂ is

dg(γ; p, q)
dγ

= dg1(γ; p, q)
dγ

1̂ + dg2(γ; p, q)
dγ

2̂ + dz(g1, g2)
dγ

3̂

= ∂z(g1(γ; p, q), g2(γ; p, q))
∂x

1̂ + ∂z(g1, g2)
∂y

2̂ +
[
∇(x,y)z(g1, g2)

]2
3̂

= −2(g1 − a)z2(g1, g2)
h

1̂ − 2(g2 − b)z2(g1, g2)
h

2̂ +
[
∇(x,y)z(g1, g2)

]2
3̂

If we assume a functional dependence g2(γ) = g2(g1(γ)), then by the familiar differential calculus
Chain Rule

dg2
dg1

= dg2
dγ

/
dg1
dγ

= ∂z(g1, g2)
∂y

/
∂z(g1, g2)

∂x
= g2 − b

g1 − a

from which ∫ dg2
g2 − b

=
∫ dg1

g1 − a

giving
g2(γ; p, q) = b + C(p, q)(g1(γ; p, q) − a) for some C(p, q).

So we have
g(γ; p, q) = g11̂ + [b + C(g1 − a)] 2̂ + z(g1, b + C(g1 − a))3̂

We are now free to choose a suitable or convenient parametrisation for g. If we wish that
g(0; p, q) = p1̂ + q2̂ + z(p, q)3̂, then we may choose g1(γ; p, q) = p + γ(a − p), so that
C(p, q) = (q − b)/(p − a). And the final parametrisation is that in (32) and (33). But to be sure,
we could also have chosen something like

g1(γ; p, q) = 1
e−1 − e

[(
pe−1 − a

)
eγ − (pe − a) e−γ

]
as a less convenient parametrisation.

Case p = a. Since g1(γ; p, q) = a for any γ, we are free to set the parametrisation as in (34).

On success, this function returns a pointer to the allocated and initialised PKREALVECTOR repre-
senting the position vector. Otherwise the function returns (PKREALVECTOR *)NULL. The function
must be accompanied by a call to freeHumpGradientPosn0().

220 PKREALVECTOR *allocHumpGradientPosn0(const char *name,
221 const PKREALVECTORREAL gamma,
222 const PKREALVECTORREAL p,
223 const PKREALVECTORREAL q)
224 {
225 PKREALVECTORREAL g1,
226 g2;
227
228 if (fabs(p-humpX) <= FLT_EPSILON) {
229 g1 = p;
230 g2 = q + gamma * (humpY - q);
231 } else {
232 g1 = p + gamma * (humpX - p);
233 g2 = humpY + (q - humpY) / (p - humpX) * (g1 - humpX);
234 }
235
236 return(pkRealVectorAlloc1(name, 3, g1, g2, hump(g1,g2)));
237 }

54

The freeHumpGradientPosn0() function is the complement to allocHumpGradientPosn0().

238 void freeHumpGradientPosn0(PKREALVECTOR *d)
239 {
240 if (d)
241 pkRealVectorFree1(d);
242 return;
243 }

If the specified (PKREALVECTOR *) pointer p is not NULL, then the allocHumpGradientPosn()
function below simply returns with the result of the call:

allocHumpGradientPosn0(name,
t,
pkRealVectorGetComponent(p)[0],
pkRealVectorGetComponent(p)[1])

Otherwise the function returns (PKREALVECTOR *)NULL. The function must be accompanied by a
call to freeHumpGradientPosn().

244 PKREALVECTOR *allocHumpGradientPosn(const char *name,
245 const PKREALVECTORREAL gamma,
246 const PKREALVECTOR *p)
247 {
248 if (!p)
249 return((PKREALVECTOR *)NULL);
250 return(allocHumpGradientPosn0(name,
251 gamma,
252 pkRealVectorGetComponent(p)[0],
253 pkRealVectorGetComponent(p)[1]));
254 }

The freeHumpGradientPosn() function is the complement to allocHumpGradientPosn().

255 void freeHumpGradientPosn(PKREALVECTOR *d)
256 {
257 if (d)
258 freeHumpGradientPosn0(d);
259 return;
260 }

The allocHumpGradientPosnArr() function allocates and initialises an array of M (PKREALVECTOR *)
gradient path positions, beginning at the specified p position. Obviously, the gradient will pass
through p. In fact, the 0-th position in the allocated array is allocated and initialised to represent
p. The j-th position, j = 1, . . . , M − 1 in the allocated array is allocated and initialised with a call
to allocHumpGradientPosn() by setting the parametrisation parameter gamma= γ = j

M − 1
On success, the function returns a pointer to the allocated and initialised array of M (PKREALVECTOR *)s.
Otherwise it returns (PKREALVECTOR **)NULL. The function must be accompanied by a call to
freeHumpGradientPosnArr().

261 PKREALVECTOR **allocHumpGradientPosnArr(const PKREALVECTOR *p,
262 const int M)
263 {
264 PKREALVECTOR **d;
265

55

266 if (!p || M < 3)
267 return((PKREALVECTOR **)NULL);
268
269 d = (PKREALVECTOR **)calloc(M + 1, sizeof(PKREALVECTOR *));
270 if (d) {
271
272 PKREALVECTORREAL gamma;
273 char *name;
274 int j;
275
276 d[0] = pkRealVectorAlloc1("\\vecgˆ0", 3,
277 pkRealVectorGetComponent(p)[0],
278 pkRealVectorGetComponent(p)[1],
279 pkRealVectorGetComponent(p)[2]);
280 for (j = 1; j < M; j++) {
281 name = strAllocPrintf("\\vecgˆ{%d}", j);
282 gamma = (double)j / (double)(M - 1);
283 d[j] = allocHumpGradientPosn(name, gamma, p);
284 strFreePrintf(name);
285 }
286
287 }
288
289 return(d);
290 }

The freeHumpGradientPosnArr() function is the complement to allocHumpGradientPosnArr().

291 void freeHumpGradientPosnArr(PKREALVECTOR **d, const int M)
292 {
293 if (d) {
294 int j;
295 pkRealVectorFree1(d[0]);
296 for (j = 1; j < M; j++)
297 freeHumpGradientPosn(d[j]);
298 free(d);
299 }
300 return;
301 }

The allocHumpGradientArr() function allocates and initialises an array of N pointers to arrays of
M gradient path positions. The starting position of each such array of M gradient path positions
is taken to be one of the N positions on the z(1

5a, 1
5b)-contour path over H.

Once a PKREALVECTOR representing the position p = 1
5a1̂ + 1

5b2̂ + z(1
5a, 1

5b)3̂ has been allocated and
initialised with an appropriate call to pkRealVectorAlloc1(), a finite subset of the D(p, ∆t) set is
implemented with the call to allocHumpContourPosnArr(p,N,0.02). That finite subset of contour
positions is then used as the abovementioned N starting positions for the N gradient paths. With
the i-th such starting position labelled as ci (i.e., as contour[i] below), then the i-th array of M
gradient path positions is allocated and initialised with the call to
allocHumpGradientPosnArr(contour[i],M).

On success, the function returns a (PKREALVECTOR ***) pointer to the allocated and initialised
array of N (PKREALVECTOR **) pointers to arrays of M (PKREALVECTOR *) gradient path positions.
Otherwise the function returns (PKREALVECTOR ***)NULL. The function must be accompanied by
a call to freeHumpGradientArr().

302 PKREALVECTOR ***allocHumpGradientArr(const int N,
303 const int M,

56

304 const PKREALVECTORREAL px,
305 const PKREALVECTORREAL py)
306 {
307 PKREALVECTOR ***gradientArr;
308 PKREALVECTOR *p;
309 int i;
310
311 if (N < 1 || M < 1)
312 return((PKREALVECTOR ***)NULL);
313
314 /*
315 * Error by default.
316 */
317 gradientArr = (PKREALVECTOR ***)NULL;
318
319 p = pkRealVectorAlloc1("\\vecp", 3, px, py, hump(px,py));
320 if (p) {
321 PKREALVECTOR **contour = allocHumpContourPosnArr(p, N, 0.02);
322 if (contour) {
323 gradientArr = (PKREALVECTOR ***)calloc(N + 1, sizeof(PKREALVECTOR **));
324 if (gradientArr) {
325 for (i = 0; i < N; i++)
326 gradientArr[i] = allocHumpGradientPosnArr(contour[i], M);
327 }
328 freeHumpContourPosnArr(contour,N);
329 }
330 pkRealVectorFree1(p);
331 }
332
333 return(gradientArr);
334 }

The freeHumpGradientArr() function is the complement to allocHumpGradientArr().

335 void freeHumpGradientArr(PKREALVECTOR ***gradientArr,
336 const int N,
337 const int M)
338 {
339 if (gradientArr) {
340 int i;
341 for (i = 0; i < N; i++) {
342 if (gradientArr[i]) {
343 freeHumpGradientPosnArr(gradientArr[i], M);
344 gradientArr[i] = (PKREALVECTOR **)NULL;
345 }
346 }
347 free(gradientArr);
348 }
349 return;
350 }

57

8.2.5 The sundry.h and sundry.c files

A listing of the sundry.h file follows:

1 #ifndef _SUNDRY
2 #define _SUNDRY

Inclusions.

3 #include <math.h> /* For ’M_PI’. */
4 #include <pkmath.h>
5 #include <pkrealvector.h>

Macro definitions.

6 #define FLTFMT "%.4g"

Function declarations.

7 extern PKREALVECTORREAL realMin(const PKREALVECTORREAL a, const PKREALVECTORREAL b);
8 extern void printVector(const PKREALVECTOR *v);

9 #endif

58

A listing of the sundry.c file follows:

1 #include "sundry.h"
2
3 #include <pkfeatures.h>
4
5 #include <stddef.h>
6 #include <stdlib.h>
7 #include <stdio.h>
8 #include <unistd.h>
9 #include <stdarg.h>

10 #include <string.h>
11 #include <math.h>
12 #include <float.h>
13
14 #include <pkmemdebug.h>
15 #include <pkerror.h>
16 #include <pktypes.h>
17 #include <pkstring.h>
18 #include <pkmath.h>
19 #include <pkrealvector.h>

20 PKREALVECTORREAL realMin(const PKREALVECTORREAL a, const PKREALVECTORREAL b)
21 {
22 return((a < b) ? a : b);
23 }

24 void printVector(const PKREALVECTOR *v)
25 {
26 if (!v)
27 return;
28
29 printf("Vector %s = (", pkRealVectorGetName(v));
30 pkRealVectorPrintf(v, "__COMPONENTVALUE__", ", ");
31 puts(")");
32
33 return;
34 }

59

8.3 Making it all with make

This simple UNIX “makefile” captures the necessary file dependencies, and demonstrates how to
compile the C files.

Generic Make targets.

1 all: dimensionality-of-reality.pdf
2
3 clobber: latexclobber
4 @rm -f *.o
5 @rm -f *.run spherefigure.tex
6 @rm -f *.core
7
8 backup: clobber
9 @PACKDIR=‘basename \‘pwd\‘‘ && cd .. && tar -czvf ${TARPATH} $${PACKDIR}

10

File based Make targets.

11
12 dimensionality-of-reality.pdf: spherefigure.tex \
13 Makefile.demo \
14 dimensionality-of-reality.bib
15

Implicit rule targets.

16
17 .SUFFIXES: .c .o .run .tex
18 .c.o:
19 clang -c -DDEBUG=2 -I/usr/local/pklib/include -DFreeBSD -o ${@} ${<}
20 .o.run:
21 clang -DDEBUG=2 -I/usr/local/pklib/include -DFreeBSD -o ${@} ${<} \
22 /usr/local/pklib/lib/libpk.a \
23 /usr/local/pklib/lib/libpkmath.a \
24 -lm
25 .run.tex:
26 ./${<} > ${@}
27

Incorporate pkLATEXmake.[7]

28
29 # Added by ’pklatexmake.mk’. Do not delete. 26Jul16
30 .include "/usr/local/pklatexmake/lib/pklatexmake.mk"

References

[1] Charles Misner, Kip Thorne, and John Wheeler. Gravitation. Number 0-7167-0334-3. W.H.
Freeman and Company, 1973.

[2] Saturnino L. Salas and Einar I. Hille. Calculus—One and Several Variables. Number 0-471-
86548-6. John Wiley & Sons, Inc., 1982.

[3] Paul Kotschy. The pklib C software library. paul.kotschy@gmail.com.

60

[4] Paul Kotschy. pkTechDoc: Literate programming for non-TEX programmers.
paul.kotschy@gmail.com.

[5] Paul Kotschy. Parametrisation of irregular paths on surfaces embedded in R3.
paul.kotschy@gmail.com, September 2016.

[6] Paul Kotschy. Rotational transformations in three dimensions. paul.kotschy@gmail.com, May
2016.

[7] Paul Kotschy. The pkLATEXmake package. paul.kotschy@gmail.com.

61

