A Study of Contour and Gradient Paths on
Surfaces Embedded in R?
Paul Kotschy
11 June 2016

Compiled on March 16, 2025

Abstract

ﬁ STUDY OF CONTOUR AND GRADIENT PATHS on surfaces embedded in R3 is presented.! An
& Winteresting formula is introduced for the gradient path passing over any point of interest in
the embedded surface. A systematic procedure is introduced for calculating both contour and
gradient paths. The surface itself, the contour path, and the gradient path exist as geometrical
objects in their own right, independent of the choice of coordinates. However, they admit a
specific set of coordinates which seem “natural” to the surface. This is studied. The commuti-
tivity of contour path and gradient path traversal for a flat plane and for an inverted parabola
is analysed.

Lpaul.kotschy@gmail.com

Contents

1 Introduction 3
2 Contour path 3
3 Gradient path 4
4 Natural coordinates 6
5 Commutivity of path traversals 6
6 Embedded flat plane 6
7 Embedded inverted paraboloid 9
8 Acknowledgments 16

9 Appendix—Computed drawing with BTEX, TikZ, pkTikZ and PKREALVECTOR 17

1 Introduction

Part of a surface S embedded in R? may be specified with the functional association

z:(x,y) = z(z,y), x,y,2(z,y) €R (1)

The surface itself is a subset of the R? vector space, and is given by

S={(z,y,2) |2 = (z,9))}

As a member of S, the triple (z,y, z(x,y)) is called a point on &, and may be represented geomet-
rically by a position vector x € R? derived from the (z,y, z(z,y)) triple as the linear combination

x(z,y) =214+ y2+ z(z,y)3 (2)

where {1, 2,38} is the usual orthonormal vector basis for R3.

As either of the x or y in the (x,y) pair in (1) varies continuously, it traces out a path (or curve)
over S specified by (2). These paths shall be of primary interest in this work.

Two tractable examples of such embedded surface sets are the flat plane and the inverted paraboloid
centred at the origin. Two specific instances of these are:

L(h) ={(z,y,2) |z =h -z -y}
1

P() ={(a,9.2) 2 = 1 (W —a? —17)}

for some parameter h € R. In this work, I shall use £(h) and P(h) as case studies. Parts of a flat
plane and an inverted paraboloid are depicted in Figure 1 (page 6) and Figure 2 (page 9).

(3)

In such depictions, z and y are obvious candidates to coordinatise S. But they are merely co-
ordinates. The surfaces exist as entities in their own right, independently of the choice of coor-
dinates. What is important is what defines a surface, namely, a specification of the association
z: (z,y) — z(z,y). For example, suppose while working with S, it is convenient to use s and t as

coordinates, where s could stand for spatial path separation, say, and ¢ for time. Then a surface
embedded in R? is

{($7y7 Z) | Z = Z(:L'ay)v T = $(Svt)7 Y= y(57t)}
and the geometrical representation becomes

X(S,t) = X(x<37t)7y(87t)) = x(‘S?t)i + y(‘S?t)ﬁ + Z(x<37t)7y(87t>)3

where the association
(s,8) = (x(s,1),y(s,1))
is called the coordinate transformation from s and ¢ to x and y.

Does the surface offer any coordinate systems which seem natural for the surface? Suppose you are
hiking in mountainous terrain. Then a natural inclination might be to find a route which either
maintains a constant height, or which offers the most direct ascent or descent. The former route
would follow a contour path, while the latter route would follow a gradient path.

2 Contour path

If a point (o, yo, z0) lies on our surface S, then it must satisfy (1):
z = (w0, yo) — 2(%0,90) = 20
The corresponding position vector is

xo = x(x0,y0) = zol + 02 + 2(z0,y0)3 = ol + yo2 + 203

But in general, there are other points (z,y) which satisfy z(z,y) = z9. Therefore, we may mean-
ingfully define the contour at zy as the set
C(20) = {(%,y,20) | 2(z,y) = 20}

The embedded surface S is a two-dimensional object because two independent parameters are
needed for its specification. But the contour C(zp) is one-dimensional because the condition
z(x,y) = 2o affirms a relation between z and y. So if we choose o as the single independent
variable, say, then o traces out a path specified by the position vector ¢ € R? given by

c(o;20) = c1(0320)1 + c2(0; 20)2 + 208 (4)

I shall call this the zp-contour path of S. For example, suppose the point (xg, Yo, 20) lies on our flat
plane £(h) (Eq. (3)), then (x0, yo, z0) must satisfy

To+yo=h— 2

So L(h)’s zo-contour is the set {(x,y,z20) |z +y=h—20)}, and L(h)’s zp-contour path may be
specified by the position vector

c(o;29) = c1(o;20)1 + (h— 20 — c1(0520)) 2 + 208

Equation (4) specifies a continuous variation of the position vector c(c;zp) with o. This variation
of a vector quantity along a path is perhaps the most natural one.

Another vector variation is the rate of change of the position vector, aligned with the direction of
travel along the contour over S. For any arbitrary path over S, coordinatised by s, say, the path’s
tangent vector is

dx(s) d _dz, dy, (5de azdy) .
ds dsx(:ﬁ(s),y(s)) N d81+ d82+ Ox ds + Oy ds 3
dr, dy. dr ., dy.\ .
PR $2+V(M)z(w,y)- (d$1+ dsz) 3

From (4), the 8-component of the tangent vector along the zp-contour path must vanish, giving

dc(o;z) dei(os20) . dea(os 20) 4
do - do L do 2 (5)

3 Gradient path

The two vector quantities (4) and (5) pertain to the zp-contour path. There is another path over
our embedded surface &, now parametrised by +, say, passing through the position xg, and whose
tangent vector is orthogonal to the zg-contour path’s tangent vector. Call this path the xg-gradient
path g, and write

8(7; o, yo) = 91(7; Zo, Y0)1 + g2(7; 0, Y0)2 + 2(91, 92)3
for some as yet unspecified g1, g2. Once again, a tangent vector along g is

dg(vizo.y0) _ dgr, dg2, dz(g1.92) 4
dy dy dy dy

Now consider another vector field over S defined by:

0%+ P25 4 Gyl)3

G(.’L‘,y) = %1 3y

for some as yet unspecified G3(z,y), and consider its value at the point (xg,yo, 20) on S. Then

d ; 0 d : 9 d :
G(.ﬁvo,yo). C(UO’Z()) — Z(x()?y()) 01(007ZO> + Z([B(),yo) 62(0'0720)

do ox do oy do
dz(e1(o0; 20), c2(00; 20))
N do
_dzo
T do
=0

This inner product vanishes because o parametrises the c(o;29) contour path, and on that path,
z = zg. So G is orthogonal to ¢ at the position xg. But G is not yet necessarily tangential to g at xg.
For it to be tangential to g, it would have to align with dg/d~. The alignment is obviously satisfied
if we define g by equating G with dg/dy at xo. That is:

dg1(v0, 20, y0) 92(wo, yo)

d~y ox
dg2(v0, 20, 30) _ 9z(x0, o)
d~y dy
92(0, yo) dg1(70, 70, %0) | 9z(z0,%0) dg2(0, To, o)
D & + 2y O = G3(x0,yo)

giving
2
G3(xo,%) = {V(x,y)z(ﬂfo,yo)}

So a tangent vector to our desired path g(v;z,y) at xq is

dg(v0; zo,y0) _ 92(xo, yo) - 0z(x0, yo)
d~y ox oy

2
2 + [V(x,y)z(x(]:y())} 3

Since the point (zg,yo, 20) on S is arbitrarily chosen, the result also holds for the point (z,y, 2)

W

on §. We may therefore drop the “y” subscript.

To summarise, at any sufficiently well-behaved point (z,y, z) on the surface S, the surface provides
two natural paths. The paths are independent of the choice of coordinate system, and both are
specified by two corresponding orthogonal tangent vectors:

1. z-contour path parametrised by o, say:

c(o;2) = c1(o;2)1 + c2(0;2)2 + 28 (6)

2. Tangent vector of z-contour path:

de(o;2) dcl(a;z)i+ dea(oy2) . .

2+03 7
do do do + (7)
3. x-gradient path parametrised by ~, say:

gvimy) = gi(v;zy)i+ 9202, 9)2 + 2(91,92)8 (8)

4. Tangent vector of x-gradient path:

dg(v;z.y) _ dpntviwy), |
dy dy dy dy

(9)

In Sections 6 and 7, this summary will be used to calculate contour and gradient paths for L£(h)
and P(h).

4 Natural coordinates

As discussed earlier (page 3, and Egs. (6) and (8)), the z-contour path c(o; z) passes through the
point (z,y,z) on S. While tracing out the path, the 3-component of our position vector remains
constant at z, and our direction of travel aligns with the tangent vector dc(o; z)/do. The x-gradient
path g(v;z,y) also passes through (z,vy, z), and is the path of most direct ascent or descent with
respect to the 3-component of our position vector x on §. And while tracing out that path, our
direction of travel aligns with dg(v; z,y)/dy.

We wish now to coordinatise our “travel experience” on & with coordinates which are associated
with these two natural paths. The procedure is to define the three normalised orthogonal vectors
at the position x:

o(x) = dc(ggs Z)/’dc(ggs z)

dg(0: 2) / ‘dg(%; z)
dy dy

(10)

gx) =

(x) = &(x) x &(x)

and then to express x under the {¢,g, i} orthornomal vector basis, and finally to compute x’s
coordinates relative to this basis. This will be done for £(h) and P(h) in Sections 6 and 7 below.

5 Commutivity of path traversals

As will be shown later, in the Euclidean 12 coordinate plane, a traversal along a contour path
commutes with a traversal along a gradient path. This commutivity does not carry over to non-
Euclidean surfaces.

To demonstrate this, introduce traversal length [as a natural path parameter. Suppose that

some path over our embedded surface S is parametrised by 7, i.e., x = x(7) for 7 € R. Then a

corresponding tangent vector along the path is dx(7)/d7r. The length of traversal over a portion of
dx(7)

the path is then
l =
(70,7) /7'0 dr

This provides us with traversal length as a function of the arbitrary parameter 7 and some initial
value 79. In principle, this relationship can be inverted to give T as a function of [. The path over &
can then be parametrised with [as x = x(7(1)) = x(1).

a7 (11)

Next, define the two coordinate mappings over S:
Cl):x—C(l)x =c(l;2) (12)
G(m) : x = G(m)x = g(m; z,y)

Here, the contour path ¢ and gradient path g passing through the position x are now parametrised
by lengths [and m, respectively. Le., c(l;z) = c(o(l); z) (Eq. (6)) and g(m;z,y) = g(y(m);z,y)
(Eq. (8)). The commutivity of contour and gradient path traversals may then be analysed by
calculating the difference

(G(m)C(l) = C(HhG(m)) x

This will be done in Sections 6 and 7.

6 Embedded flat plane

Given its simplicity, the embedded flat plane £(h) (Eq. (3)) offers a useful—albeit, mundane—
starting point for studying contour and gradient paths. Part of a typical flat plane is shown in
Figure 1.

3

Figure 1: Flat plane £(h) specified by (3), showing a contour path c(o; z) and a gradient
path g(v;x,y) intersecting orthogonally at the point x on L£(h). Both ¢ and g were
calculated using (6), (7), (8) and (9).

Contour path. From (6), a z-contour path on £(h) is, say,

clo;2) = (z—o)i+p(0)2+(h—(x—0)—p(o))3

The i-component is parametrised as (z — o) so that the i-component decreases with increasing o,
in keeping with Figure 1. But indeed, we are free to specify the functional dependence of the
i-component on o however we please. Being a contour path, the 3-component must be constant

with respect to o (c.f. (7)):
a
do

A z-contour path is therefore

(h—(x=0)=p)=0 = pulo)=y+o

clo;2) = (x—0)i+(y+o0)2+23
And a corresponding tangent vector is

dc(o; 2)

= —-1+2
do +

Gradient path. For an x-gradient path on £(h), we must calculate the partial derivaties

0: _0:_
or Oy
giving a tangent vector of g, using (9), as
dg(~; PN A
8T Y) _ 4503

dy

(13)

(14)

(15)

From this tangent vector, it is easy to calculate an x-gradient path on £(h) as

gvizy) = (@—Ni+ -2+ (h-z-y+27)3 (16)
And as expected, the z-contour and x-gradient paths intersect orthogonally at x:

c(0;2) =x1+y2+ 23

g0;z,y)=2i+y2+ (h—x—y)8=21+y2+ 23

de(0;2) dg(0;z,y)
do d~y

—(—i+2)-(-i-2+28)=0

Natural coordinates. Using (10), the three normalised orthonormal basis vectors at position x
on L(h) were calculated as:

1 JUN
&w,y) = =(-1+2)

1 A o
g(z,y) = 76(—1—2+23)

| N
i(z,y) = —3(14—2—}-3)

To express x under {&, g, i}, write
x(z,y) =21 +y2+z2(z,y)8=2i+y2+ (h—x—y)3
= u(z,y)e +v(z,y)g + w(z, y)h

The resulting system of equations to be solved for u, v and w is

—\/§u—v+\f2w:\/6x
\/gu—v—i—\/ﬁw:\/éy
20 + V2w = V62

Solving this system for u, v and w gives

—r+vy. 2h —3x — 3y ., h .
x(x,y) = 7 &(z,y) + Tg(ﬂv,y) + %n(ﬂc,y)

Path traversal commutivity. On L(h), using (14), it is easy to calculate the length along the
dc(o; 2)

z-contour as Y
[(0,0) = /0 E de =20

This path length offers a natural parametrisation of the z-contour path on £(h). From (13),

o(l;z) = e(o(l);2) = (2 —1/V2)i+ (y+1/v2)2 + 23

On L(h), using (15), the length along the x-gradient is

m(0,) Z/O7

and a natural parametrisation of the x-gradient path on £(h) becomes, using (16),

dg(y;z,y) ’ _
SN Iy =
dﬁ Y \/éfy

gmiz,y) = g(y(m)iz,y) = (z=m/V6)i+ (y—m/V6)2+ (h—z—y+2m/V6)s (7)

As per (12), define the coordinate mappings over L(h):

Cl):x—C(l)x =c(l;2)
g(m) : x = G(m)x = g(m; z,y)

8

A traversal of length [over the z-contour path, starting at position x, followed by a traversal of
length m over the c(l; z)-gradient path is

Gm)C()x = G(m) [(z = 1/V2) i + (y+1/v2)2 + 28
= [(@ = 1/v2) = m/VB| i+ [(y+1/v2) — m/ V] 2
+ [h = (@ = 1/V2) = (y +1/V2) + 2m/ V6] 3
= [z =1/V2=m/VB|i+ |y +1/V2—m/VE| 2+ [h—z—y+2m/VE|3

And a traversal of length m over the x-gradient path, starting at position x, followed by a traversal
of length [over the gs(m;z,y)-contour path is

c)g(myx = () [(z=m/vV6) i+ (y—m/V6)2 + (h—=z—y+2m/V5)3]
= [(@=m/VE) —1/V2| i+ [(y = m/VE) +1/V2] 2+ [h— 2 — y+2m/V6] 3
= G(m)C(l)x

This proves the contour and gradient path traversal commutivity in the Euclidean flat plane. This
commutivity underlies a meaningful definition of geometrically extended objects in Euclidean space,
such a vectors. However, as will be shown in the next section, in non-Euclidean space this cannot
be done, and the notion of a vector must be restricted to a geometrically local object, namely, the
tangent vector.

7 Embedded inverted paraboloid

A typical inverted paraboloid P(h) (c.f. Eq. (3)) is shown in Figure 2.

Intuition. For a paraboloid, expressions for the contour and gradient paths are easy to obtain
intuitively. If r and 6 are the polar coordinates defined by the coordinate transformation

x(r,0) =rcosf and y(r,0) =rsind
then contour and gradient paths passing through a specified point (p cos ¢, psin ¢) are, respectively,
1
h
g(r;¢) =cosopri+singr2+ %(h2 — 7‘2)

c(0;p) = pcosfi+ psinf2 + —(h* — p*)3

(18)

>

The notation “c(6; p)” indicates that the contour path is parametrised by the 6 polar coordinate,
with p a constant. Similarly, the notation “g(r; ¢)” indicates that the gradient path is parametrised
by the r polar coodinate, with ¢ a constant. Clearly, as expected, ¢(¢; p) = g(p; ¢).

Respective tangent vectors at the point (pcos ¢, psin ¢) are:

dc(0; . A
wa,p) = —psinfi + pcos 62
_ 9
dg(r; ¢) = cos @i + sin @2 — —Tﬁ

dr h

And as expected, the two tangent vectors are orthogonal at the point (pcos ¢, psin ¢):

de(0;p) dg(r; ¢)
dé dr

= psin¢gcosf — pcospsinf

=0 whenever 0 = ¢

But now I wish not to appeal to basic intuition, but rather to the prescription laid out in (6), (7),
(8) and (9).

Figure 2: Inverted paraboloid P(h) specified by (3), showing a contour path c(o; z) and
a gradient path g(v;x,y) intersecting orthogonally at the point x on P(h). Both ¢ and
g were calculated using (6), (7), (8) and (9), and drawn computationally. As expected,
the apex position t lies on g.

Contour path. Suppose that the point (z,y, z) lies on P(h). Then (x,y, z) must satisfy

l {hz—xQ—yﬂ

Z(.T,y) = h

P(h)’s z-contour passing through the position x = z1 + y2 + z(z,y)3 is the set

{(z,y) | 2> + 4% = h(h — 2)}. There is considerable latitude in specifying P(h)’s z-contour path.
We may choose that under a parametrisation, the path’s i-component varies as x — . Then in
place of (6), we may write for a z-contour path on P(h):

clo;z) = (z—o)i+plo)2+ % [h2 —(z—0)? - ,U,Q(O')} 3 for some u(o).

In keeping with Figure 2, the i-component is parametrised as z — o so that the i-component
decreases with increasing o. Being a contour path, the 3-component must be constant with respect
to o (c.f. (7)):

= (G- -e)]) -
dp
e _

m(o) o
= / udp = / (r —o)do
Y 0

= u(o) = \/JJ2 +y2 — (z—0)? (Considering only the positive root for now.)

= 2(z—0)—2u 0

This gives
% [h2—(:1:—0)2—u2(a)] = % {h2—x2—y2] =z

10

as expected. A z-contour path and its corresponding tangent vector is therefore

c(o;2)=(x—o)i+ /22 +y?— (x—0)?2+23
de(o;2) iy r—o 5 (19)
N A Tk

To be sure, we could have chosen, say,

clu;z) = /a2 +y? —u?il 4+ u2 + 23

as an alternative but equally valid parametrisation.

Gradient path. For an x-gradient path on P(h), we must calculate the partial derivatives

0z 2x 0z 2y
—— and =——

dx h dy h

A tangent vector of g is, using (9),

= - i

dg(v;7,y) 200(7) ;. 292(7),
dvy h h

This can easily be solved for g; and go:

dgi(v) _ 20:1(v)

d~y h

91(7) d 2 1
= / Y__= dvy

x g h‘ Yo

= q(yz,y) = ze 2070/

Similarly, go(7;x,y) = ye 200=10)/" An x-gradient path is therefore, from (8),
g(v:z,y) = ze 20-0/hg | ye-20-w0)/hy 4 L [= (@2 4 y?)e 100 5
)) h

Provided that the parametrisation satisfies og = 0, it is clear that c(o; 2) and g(y; x, y) intersect at
the point on P(h) specified by (o9, 70), i-e., ¢(o0; 2) = g(70; z,y). If we apply the coordinate trans-
formation e=2(r=70)/h 5 ~ with ~g — 1, then the x-gradient path and its corresponding tangent
vector is

. A 1 4
g(viz,y) = ori+n2+ o W (@) = (57)°] 3
=yl +yy2 + z(27,y7)3 (20)
dg(v; oA 2@+,
BTy _ s 2 Y)Y,
dvy h

And at that point, their respective tangent vectors are orthogonal:

‘ L 912 2
dc(O,z)‘dg(,SU,y):(i_x@, aji+y§—(x7+y)3 =0
do dy y h

The prescription (6)...(9) was used to compute the paths (19) and (20), as shown in Figure 2.
Refer to the Appendix on page 17 for details on the computations.

11

The prescription agrees with intuition. To prove correspondence between the two contour
paths ¢ and c, and between the two gradient paths g and g, it is sufficient to prove coincidence
between respective positions on the pairs of paths. Comparing (18) and (19), a position on ¢
coincides with a position on ¢ whenever

1
pcost = o, psinf = y/x2 + y2 — 02, and E(hQ—pQ)

02 =2 4 y?

That is, whenever

and

/22 4 2 — o2
tang = Y TV 07 < 0 =arccos(o/y/2% + y?)

o
That is, the following two contour paths correspond:

c(O;\/x2+y?) = \Jx2+y?cosO1+ /2?2 4+ y?sinh2 + 23
clo;2) = ol+ /2?2 +y? —022+ 23

c (arccos(a/\/x2 + y?); \/xQ + y2> =c(0;2)

And specifically,

Comparing (18) and (20), a position on g coincides with a position on g whenever

cospr =xv and sin¢r =y,

¢ = arctan <y)
x
r=\/22+y%y

We have thus proved that these two gradient paths correspond:

That is, whenever

and

(h2 - r2) 3

S

_ xr yr .
r;arctan(y/x)) = ———1+ ———-=-2+
& WD = ot o

gy, y) = 2yl +yr2+ z(ay,y7y)3

g (\/m2 + 92 arctan(y/fc)> = g(v;7,y)

Natural coordinates. Using (19), (20), and evaluating the derivatives at ¢ = 0 and v = 1, gives
the orthonormal vector basis {€, g, i} at position x on P(h):

And specifically,

1,
&(z,y) = ~ (—yi +22)

;
1

§(x,y) = ——=—— (hzi + hy2 — 2r°8

g(z,y) T/7h2+4’l“2(y)

with 2 = 22 + 3. To express x under {&, g, i}, write
x(z,y) =21+ y2 + 2(2,y)3
oA s Lo 9 9\,
—x1+y2+ﬁ<h —x"—y)3
= u(z,y)¢ +v(z,y)g + w(z,y)h

12

The resulting system of equations to be solved for u, v and w is

—yVh?+4r2u+ hav — 2zrw = xrvVh2 + 4r2
TV h2 4+ 4r2u + hyv — 2yrw = yrv/ h2? + 412
—2rv — hw = Vh2 + 4r2z

This system is linear in u, v and w, and is easily solved, giving

(oe@c,y) - VIV (12 2(a? 4) &(ry) — (B2 4 2% 4 gD y>>

x(z,y) = N ST

Path traversal commutivity. On P(h), using (11) and (19), the length along the z-contour is

l(0>a):/0 / \/ﬁ o withr:\/aﬁy2

Although this is a well-known standard i_ntegral,m I wish to carry out the integration here. Let
x — o = rarcsiny. Then do = —r cosdi), giving

dcaz

—r cosw x r—o0
1(0,0) / with 1y = arcsin <> , Y = arcsin < >
Yo /1 — sin? r r
=10 —) . o
= rarcsin (sin(¢g — ©))
= rarcsin (sin ¢y cos 1) — sin 1) cos Yy) 2 (12— o) (21)
(\/ﬁ T —0o\Vr— x2>
= rarcsin
r r
2 (r—)2 — _
= rarcsin ($ r (x :2) y(0)>

Consider traversing P(h)’s 0-contour path (c.f. (19)) c(o;0) = (h— o)1+ /h? — (h — 0)? 2+ 08,
beginning at ¢(0;0) and ending at c(h;0). Then
1(0, h) = harcsin((hvh? — 0 — 0)/h?) = harcsin(1) = 7h/2, as expected.

Equation (21) provides length traversed along c(o; z) as a function of the path parameter o, starting
at the position x on P(h). This relationship can easily be inverted, allowing o to be specified as a
function of distance traversed:

o(l) =z +ysin(l/r) — x cos(l/r) (22)
Substitution into (19) offers a natural parametrisation of the z-contour path on P(h) as

c(l;z) =[x cos(l/r) —ysin(l/r)]1 + [zsin(l/r) +ycos(l/r)]2 + 23 (23)

Using (11) and (20), the length along the x-gradient is

d 47252
m(l,fy):/1 g('y,afy dy = / |1+ h;/ dy with r = /22 + 92

Again, although this is a well-known integral,m I choose to carry out the integration here. Applying

13

h - h -
the substitutions v = o tant, dy = o sec? ¢ i, gives
r r

P - 2 2
—m(l,7y) = / sec3pdyy with ¢ = arctan <7"Y> , 1o = arctan <T>
h bo h h

C _ _
:/w sec) sec? ¢ dip

¥ _
_ sec b dtan
%o d¢

o
= secy tan) —/
L) o

dy
dsecz/;

tany dyy (Using “Integration by parts”.)

= sec&tan&w —/wsecwtanzwdiﬁ

_ _1 P _ _ _
= secwtanwwo —/O secz/z(seczw— 1) dyp
¥ 2

_ _ P - -
= secytany)| — —m(l,7) +/ sec 1) dip
Yo h o

4 _ _ _ _
= Em(l,’y) = sec) tan 1) :/;O + In (secv/)+tan1/)) zo

t
= seewtany—meantan +1a (ST

2T 27”}/ + \ /h2 + 47a2f}/2
= — (y\/h? + 4r? 2—\/h2+4r2)+ln
2 (fy i 2r +Vh2 + 4r?

RN () - () (5) -
() v G5) () - ()

h 2y + VB £ 4122
= m(l,7) = % (’y\/hQ +4r2y2 — \/h2 +4r2) + 41n< f’;ﬂi h?iz;n;)

But if we define 8(u) = 2arcsinh(2v/z? + y?u/h), and keep in mind these hyperbolic function
identities:[!

arcsinh(z) x+ Va2 +

cosh?(z) — 81nh2(w) =1

sinh(z) cosh(x) = %sinh(Qa:)

sinh(z) — sinh(y) = 2(:osh(2) sin h(5 y)

11 (22) w st (200) _ s (20 Vl s (20

L B =B

= sinh (6 > cosh (6(27 > — sinh <6(21)> cosh <6(21)>

p() = B6(1)
2

then

+

so that finally,
m(l,vy) = g (sinh B(v) + B(y) — sinh 3(1) — B(1)) with S(u) = 2arcsinh (2\/1’2 + 2 u/h)

14

This expression for m(1,7) cannot be inverted analytically, as was done for [(0,0) in (22). So
unfortunately, we are unable to obtain an analytical expression for the natural parametrisation of
the x-gradient path on P(h), as was done for £(h) in (17). But observe that m(1,v)’s dependence
on z and y is only in the form of powers of r = y/z2 + y2. And any point on the z-contour path
on P(h) preserves y/z? + y? (Eq. (19)). Therefore, the parametrisations are the same for the path
length of all x-gradients such that x lies on the z-contour path. And so, to analyse path traversal
commutivity of the z-contour path and the x-gradient for any x on P(h), we may happily use c(l; z)
from (23) together with g(v;x,y) from (20).

As suggested by (12), and in keeping with the previous paragraph, define the coordinate mappings
over P(h):

Cl) :x—C(l)x =c(l;2)
G(v) i x = G(v)x = g(v;2,9)

A traversal of length [over the z-contour path, starting at position x, followed by a traversal of
length m(1,~) over the c(l; z)-gradient path is

GC)x =G(y) [(zcos(l/r) —ysin(l/r)) 1+ (xsin(l/r) + ycos(l/r)) ﬁ + 23]
= [wcos(1/r) = ysin(l/r)] i + wsin(i/r) +ycos(l/r)| 12 + 1 [hQ K

And a traversal of length m(1,v) over the x-gradient path, starting at position x, followed by a
traversal of length [over the gs(m(1,~);z y)-contour path is

CWG(x = € |ovi+ 2 + 5 (17— r2?) g
= [wveos (1/y/(@)2 +)2) = yvsin (1o + 2| 1+
[m sin (U\/W) + 7 cos (l/ (z7)? + (yv)Qﬂ
L= @) — @] 8
= [zcos(I/ry) —ysin (I/ry)] 71+

[:c sin (1/ry) +ycos (I/ry)]v2+
[hQ r2 2] 3

N>

+

h
Taking the difference:

(G(V)C(l) —CD)G(v))x = [z cos(l/r) — ysin(l/r) — z cos(l/ry) + ysin(l/ry)] 1+
v [zsin(l/r) + ycos(l/r) — xsin(l/ry) — ycos(l/rv)]
v [z [cos(l/r) — cos(l/rv)] — y [sin(l/r) — sin(l/rv)]] 1
gt 112

)
[[sin(l/r) — sin(l/r)] + y [cos(l/r) — cos(l/r7)

i
2

+

The trigonometric identities

b—a

. a+b .
cos(a) — cos(b) = 2sin(5) sin(5)
sin(a) — sin(b) = 2 cos(a i b) Sin(a — b)

give, after some algebraic manipulation,

(GMn)C) —C()G(v)) x

s (- D) [(£ 0+) v (2):
(o) e ()

15

(24)

Clearly, this path traversal difference vector vanishes only when v = 1 or when | = 0. The two
path traversal pairs over P(h) shown in Figure 3 demonstrate the non-vanishing of (24).

3

Figure 3: On the inverted paraboloid P(h), contour path and gradient path traversals,
as calculated in (24), do not commute. The four paths were calculated using (6), (7), (8)

and (9), and drawn computationally. Refer to the appendix in Section 9 for details on
the computations.

8 Acknowledgments

As always Mels, thanks for being such a close friend and supportive partner, and for showing an
interest in this work.

16

© 00 N O Ut A W N

[T N B S T S e N S
N B O © 0 N O Ut i W N+~ O

9 Appendix—Computed drawing with BWTEX, TikZ, pkTikZ and
PKREALVECTOR

In this section I demonstrate the combined use of IWTEX, TikZ, my pkTikZ IATEX packagel”), and
my C object class called PKREALVECTORZ to produce the three-dimensional schematic diagrams
included in this document.

Perhaps not suprisingly, the text in the document was typeset with IATEX. The figures were
typeset with TikZ. TikZ is software capability for typesetting graphical content directly in KTEX.
The specification and calculation of the three-dimensional landscapes in the figures were done
in the C programming language with the help of my PKREALVECTOR object class. PKREALVECTOR
provides a useful coding abstraction for instantiating and manipulating vectors in R". For example,
PKREALVECTOR’s API? includes calls to perform the rotational coordinate transformations needed
to render on paper a two-dimensional projection of a three-dimensional landscape.

To typeset a figure, the XTEX source file for this document \input{}’s another external KTEX
source file. In the case of Figure 2, the file was named paraboloidfigure.tex. The file contains
the TikZ source code instructions to typeset the figure. The file was generated dynamically as
the output of the execution of the paraboloidfigure.run program, which in turn was created by
compiling the C code located in the paraboloidfigure.c file. Actually, by virtue of the presence
of the Makefile file for the UNIX Make system, as listed below, I simply needed to type make to
create the final PDF-formatted document file, a copy of which you are currently reading.

To incorporate TikZ’s capabilities during typesetting, I included the following lines of IATEX code
in the preamble of my ITEX “.tex” file:

\usepackage{pktikz}
\usetikzlibrary{calc}
\usetikzlibrary{positioning}
\usetikzlibrary{intersections}

TikZ was customised “globally” for all figures in the document using the following lines of KXTEX
code:

\newcommand*\st{\, |\,} % ’such that’.
\newcommand*\ud{\text d}

\newcommand*\deriv [2]{\frac{\ud #1}{\ud #2}}
\newcommand*\derivB [2]{\ud #1/\ud #2}
\newcommand#*\parDeriv[2]{\frac{\partial #1}{\partial #2}}
\newcommand#*\evalAt [2]{\1left.#1\right|_{#2}}J
\newcommand*\evalFromTo [3]{\left.#1\right | _{#2}~{#3}}%

\newcommand*\abs [1] {\protect\left|#1\protect\right|}

\newcommand*\one{\pktikzBasisVector{1}}
\newcommand*\two{\pktikzBasisVector{2}}
\newcommand*\three{\pktikzBasisVector{3}}

\newcommand*\vecx{\pktikzVector{x}}
\newcommand*\vecc{\pktikzVector{c}}
\newcommand*\vecg{\pktikzVector{g}}
\newcommand*\vecG{\pktikzVector{G}}
\newcommand*\vect{\pktikzVector{t}}
\newcommand*\surface{\mathcal{S}}
\newcommand*\plane{\mathcal{L}(h)}
\newcommand*\parab{\mathcal{P}(h)}

2 Application Programming Interface

17

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

\newcommand*\chat{\pktikzUnitVector{cl}}
\newcommand*\ghat{\pktikzUnitVector{gl}}
\newcommand#*\nhat{\pktikzUnitVector{n}}
\newcommand*\contmap{\mathcal{C}}
\newcommand*\gradmap{\mathcal{G}}
\newcommand*\dS{\ud S}
\newcommand*\vecdS{\ud\pktikzVector{S}t}

\newcommand*\myrsqr{x~2+y~2}
\newcommand*\myr{\sqrt{\myrsqr}}

% For TikZ begins.
yA

%\tikzset{

%t

%

% For TikZ ends.

The file paraboloidfigure.tex contains TikZ code for Figure 2. It resembles:

\begin{PkTikzpicture} [scale=1.0]

A

% Some coordinates.

/A

\coordinate (origin) at (0,0);

A

% Basisvectors.

b

\draw [pktikzbasisvector,<->]
(-4.00405,-2.86636) node[below left] {\one} —-
(origin) -- (6.91956,-1.34503) nodel[right] {\two};

b

% The paraboloid.

b

\draw [parabsurface]
(-3.55594,1.01518) --
(-3.19215,1.07405) --

(-3.55594,1.01518) ;
\path (1.53038,5.65063) node[above right,edgecolor]{\parab};
\draw [surface]

(-0.90268,6.05877) --

(-0.538888,6.11765) --

(4.38155,2.12884) ;

b

% ’z’-contour path ’c’.

YA

\draw [emphvectorcolor] plot[smooth] coordinates {
(3.58346,2.51076)
(3.46522,2.4308)

18

(-2.27789,1.69415) 7};
\path (-0.976833,1.5442) node[below,emphvectorcolor]{$\vecc(\sigma;z)$};

\end{PkTikzpicture}

The paraboloidfigure.tex file was incorporated into the body of the text with an \input{}
KTREX command, as follows:

\begin{figure}[h!]
\begin{center}
\input{paraboloidfigure.tex}
\end{center}
\caption{...}
\label{paraboloid}
\end{figure}

The content of the paraboloidfigure.c C source file, which was used to create the TikZ code
in paraboloidfigure.tex, has been primed to be typeset using the Pk TECHDOC “literate pro-
gramming” KTEX package.3) Pk TECHDOC makes it possible to closely juxtapose KETEX code and
non-I{TEX code both for typesetting and for compilation outside of IATEX.

#include <pkfeatures.h>

#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <stdarg.h>
#include <string.h>
#include <math.h>

#include <float.h>

#include <pkmemdebug.h>
#include <pkerror.h>
#include <pktypes.h>
#include <pkstring.h>
#include <pkmath.h>
#include <pkrealvector.h>

#include "globals.h"

static void _printVector(const PKREALVECTOR *v)

{
printf("Vector %s = (", pkRealVectorGetName(v));
pkRealVectorPrintf(v, "__COMPONENTVALUE__", ", ");
puts(")n);
return;

}

The _paraboloid() private function below simply returns the value z(x,y) of the constitutive
equation (3) for the inverted paraboloid P(h). The paraHeight global variable is defined in the
globals.h C header file.

19

34
35
36
37
38

40
41
42
43
44
45
46
47
48
49

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

static PKMATHREAL _paraboloid(const PKMATHREAL x, const PKMATHREAL y)

{

const PKMATHREAL h = paraHeight;
return(1.0 / h * (h*h - x*x - y*y));

The _diagram() private function below specifies the diagram’s three-dimensional landscape. It
does this primarily using the PKREALVECTOR object class. The function prints to standard output

a body of TikZ source code which may be used to typeset the landscape in TEX.

But before this function can do so, it must transform the landscape in such a way that what
TikZ typesets is a two-dimensional projection of the three-dimensional landscape. The function
rotationally transforms the landscape onto the space spanned by the {i’,2’, 8’} orthonormal vector
basis set, where the i’ and 2’ basis vectors lie in the plane of the page and 3’ is perpendicular to

the page, i.e., lying parallel to the reader’s line of sight.

In the function, the xLos, yLos and zLos are required for the rotational transformations. They are
the three coordinates of the “line-of-sight” vector under the {1, 2,3} vector basis. The angle 6 is the
tilt angle between 2 and the 2’3’ plane. The actual transformation is affected via calls resembling

pkRealVectorsUnderLineOfSightBasis1(xLos, yLos, zLos, theta,
el, e2, e3,

NULL)

For further details, refer to 2/ and [l

static void _diagram(void)

{
const int Nx = 15,
Ny = Nx,
Nc = 20,
Ng = 10;
PKMATHREAL xMin,
xMax,
yMin,
yMax;
PKMATHREAL p, q;
PKREALVECTOR *el,
*e2,
*e3,
*t,
*X,
*x1,
*xX2,
*x3,
*x12,

/%
/%
/%
/%
/%
/%

Apex of the paraboloid. */
Position on the paraboloid. */

Component vector
Component vector
Component vector
Component vector

r [Nx+1] [Ny+1], / An array
*c [Nc+1],

*xg [Ng+1];

int 1,
Js

/* An array

of
of
of
of
of
of

’x’ along 1. */

’x’ along 2. */

’x’ along 3. */

’x’ in the 1-2 plane. */
positions on the paraboloid. */
positions on the contour path */

/* passing thru ’x’. */
/* An array of positions on the gradient path */
/* passing thru ’x’. */

Here we specify the three-dimensional landscape. Begin with the {1,2,3} vector basis.

20

66 el = pkRealVectorAllocl("\\one", 3, basisVeclLen, 0.0, 0.0);

67 e2 = pkRealVectorAllocl("\\two", 3, 0.0, basisVeclen, 0.0);

68 e3 = pkRealVectorAlloc1("\\three", 3, 0.0, 0.0, basisVecLen);

69

70 /*

71 * The apex position.

72 */

73 t = pkRealVectorAllocl("\\vect", 3, 0.0, 0.0, _paraboloid(0.0,0.0));

The array r represents an N, x N, matrix of positions vectors on P(h).

74 {

75 xMin = - 0.2 * paraHalfWidth;

76 xMax = 0.8 * paraHalfWidth;

7 yMin = - 0.2 * paraHalfWidth;

78 yMax = 0.8 * paraHalfWidth;

79 for (i =0; i< Nx; i++) {

80 p = xMin + (double)i / (double)Nx * (xMax - xMin);

81 for (j =0; j <Ny; j++) {

82 q = yMin + (double)j / (double)Ny * (yMax - yMin);
83 r[i] [j] = pkRealVectorAlloci("", 3, p, q, _paraboloid(p,q));
84 b

85 X

86 }

The position vector x represent any point of interest on P(h).

87 p = 0.3 * paraHeight;
88 q = 0.6 * paraHeight;
89 x = pkRealVectorAllocl("\\vecx", 3, p, q, _paraboloid(p,q));

90 x12 = pkRealVectorAllocl("x12", 3, p, q, 0.0);

91 x1 = pkRealVectorAllocli("x", 3, p, 0.0, 0.0);
92 x2 = pkRealVectorAlloci("y", 3, 0.0, q, 0.0);
93 x3 = pkRealVectorAllocl("z(x,y)", 3, 0.0, 0.0, _paraboloid(p,q));

Specification of N, sample positions on the z-contour path c(o; z).

94 {

95 const PKMATHREAL x0 = pkRealVectorGetComponent (x) [0],
96 yO = pkRealVectorGetComponent (x) [1],
97 z0 = _paraboloid(x0,y0),

98 //xMin = - sqrt(x0 * x0 + yO * yO) + FLT_EPSILON;
99 xMin = 0.0;

100 xMax = sqrt(x0 * x0 + yO * yO) - FLT_EPSILON;

101 for (i =0; i< Nc; i++) {

102 char *name = strAllocPrintf("\\vecc_%d", i);

103 p = xMin + (double)i / (double) (Nc - 1) * (xMax - xMin);
104 q = sqrt(yO * yO + x0 * x0O - p * p);

105 c[i] = pkRealVectorAllocl(name, 3, p, q, z0);
106 strFreePrintf (name) ;

107 }

108 }

Specification of N, sample positions on the x-contour path g(v;z,y).

109 {
110 const PKMATHREAL x0 = pkRealVectorGetComponent (x) [0],
111 yO = pkRealVectorGetComponent (x) [1];

21

112 xMin = pkRealVectorGetComponent(x) [0] + 0.05 * paraHalfWidth;

113 xMax = pkRealVectorGetComponent (t) [0];

114 for (i =0; i< Ng; i++) {

115 char *name = strAllocPrintf("\\vecg_%d", i);
116 p = xMin + (double)i / (double) (Ng - 1) * (xMax - xMin);
117 q = y0 / x0 * p;

118 gli] = pkRealVectorAllocl(name,

119 3,

120 P,

121 q,

122 _paraboloid(p,q));
123 strFreePrintf (name) ;

124 }

125 }

Rotationally transform the landscape onto the space spanned by the abovementioned “line-of-site”
basis. That is, transform all vectors into “shadow” vectors which lie in the 1’2" plane lying flat on
the page.

126 for (i =0; i< Nx; i++) {

127 for (j =0; j <Ny; j++) {

128 pkRealVectorUnderLine0fSightBasis1(r[i] [j],

129 xLos, yLos, zLos, theta);
130 }

131 }

132 pkRealVectorsUnderLine0fSightBasisV1(xLos, yLos, zLos, theta,

133 c, Nc);

134 pkRealVectorsUnderLineOfSightBasisV1(xLos, yLos, zLos, theta,

135 g, Ng);

136 if (0 == pkRealVectorsUnderLineOfSightBasis1(xLos, yLos, zLos, theta,
137 el, e2, e3,

138 t,

139 x, x1, x2, x3, x12,
140 NULL)) {

Prepare the TikZ commands for typesetting the projection of the three-dimensional landscape
of P(h).

141 puts("\\begin{PkTikzpicture}[scale=1.0,");

142 puts(C " mypoint/.style={pktikzpoint,fill=black},");

143 puts(C " %paraboloid/.style={pktikzsurface,shading=axis,");

144 puts(C " % shading angle=170,opacity=0.5}]1");
145 puts(C " paraboloid/.style={draw=pktikzsurfacedrawcolor,top color=y
146 puts(" bottom color=pktikzsurfacefillcolor,")
147 puts(" opacity=0.5}1");

148 putsC " %");

149 puts(" %#\\draw[help lines] (-0.2,-0.2) grid (7.1,5.1);");

150 puts(" YADR

151 puts(" % Some coordinates.");

152 puts(C " %");

153 puts(" \\pktikzSetUncircledPoint{(0,0)}{origin};");

154 printf(" \\pktikzSetUncircledPoint{(%g,%g) X{t};\n",

155 pkRealVectorGetComponent (t) [0], pkRealVectorGetComponent (t) [1]);

156 printf(" \\pktikzSetUncircledPoint{ (%g,%g) }{x};\n",

157 pkRealVectorGetComponent (x) [0], pkRealVectorGetComponent (x) [1]);

158 puts(C " %");

159 puts(" % Basisvectors.");

160 putsC " %");

161 printf(" \\draw[pktikzbasisvector,<->]\n"

162 " (%g,%hg) nodel[below left] {$%s$} --\n"

22

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224

printf(

puts(
puts(
puts(
printf(

puts(
puts(
puts(
//puts(
//puts(
puts("
for (j

" (origin) -- (%g,%g) nodelright]l {$%s$};\n",
pkRealVectorGetComponent (el) [0],
pkRealVectorGetComponent (el) [1],
pkRealVectorGetName(el),
pkRealVectorGetComponent (e2) [0],
pkRealVectorGetComponent (e2) [1],
pkRealVectorGetName (e2));

" \\draw [pktikzbasisvector,->]\n"

" (origin) -- (%g,%g) nodelabove] {$%s$};\n",
pkRealVectorGetComponent (e3) [0],
pkRealVectorGetComponent (e3) [1],
pkRealVectorGetName(e3));

n %ll);

" % The components of the ’x’ position.");
")

" \\draw [pktikzdimension,semithick]\n"
" (origin) --\n"

" (%g,hg) ——\n"

" (%g,hg) ——\n"

" (%g,%g) node[left]{$%s$}\n"

" (%g,%g) nodel[left=3pt]l{$%s$} --\n"
" (%g,%g) --\n"

" (%g,%hg) nodelabove]l {$%s$};\n",
pkRealVectorGetComponent (x12) [0],
pkRealVectorGetComponent (x12) [1],
pkRealVectorGetComponent (x) [0],
pkRealVectorGetComponent (x) [1],
pkRealVectorGetComponent (x3) [0],
pkRealVectorGetComponent (x3) [1],
pkRealVectorGetName (x3),
pkRealVectorGetComponent (x1) [0],
pkRealVectorGetComponent (x1) [1],
pkRealVectorGetName(x1),
pkRealVectorGetComponent (x12) [0],
pkRealVectorGetComponent (x12) [1],
pkRealVectorGetComponent (x2) [0],
pkRealVectorGetComponent (x2) [1],
pkRealVectorGetName (x2));

n %ll);
" % The paraboloid.");
L AD N
" \\draw[pktikztranslucentsurfacel");
" \\draw[pktikzsurfacel]");
\\draw [paraboloid]");
=0; j<Ny; j++){

printf(" (%g,%hg) --\n",

}

for (i

pkRealVectorGetComponent (r [Nx-1] [j1) [0],
pkRealVectorGetComponent (r [Nx-1] [j1) [1]);

=Nx - 1; i> 0; i--) {

printf(" Chg,hg) --\n",

}
for (j

pkRealVectorGetComponent (r [i] [Ny-1]) [0],
pkRealVectorGetComponent (r[i] [Ny-11) [1]);

=Ny -1; j>0; j—){

printf(" Chg,hg) --\n",

}

for (i

pkRealVectorGetComponent (r [0] [j1) [0],
pkRealVectorGetComponent (r [0] [j1) [1]);

=0; i< DNx-1; i++) {

23

225 printf(" (hg,hg) —-\n",

226 pkRealVectorGetComponent (r[1] [0]) [0],

227 pkRealVectorGetComponent (r [1] [0]) [1]);
228 X

229 printf(" (hg,%g) ;\n",

230 pkRealVectorGetComponent (r [Nx-1] [0]) [0],

231 pkRealVectorGetComponent (r [Nx-1] [01) [1]);
232 printf(" \\path (%g,%g) nodel[above right,pktikzsurfacedrawcolor]{$\\parab$};\n",
233 pkRealVectorGetComponent (r [0] [3*Ny/7]) [0],
234 pkRealVectorGetComponent (r [0] [3*Ny/7]1) [1]);
235 putsC " %");

236

237 for (i=1; i< Nx-1; i++) {

238 puts(" \\draw[pktikzsurfacelines]");

239 for (j =0; j<Ny; j++) {

240 printf(" (%g,%g) %s\n",

241 pkRealVectorGetComponent (r[i] [j1) [0],
242 pkRealVectorGetComponent (r[i] [j1) [1],
243 (J < Ny - 1) ? n o __n . n ; n) ;

244 X

245 ¥

246 putsC " %");

247 for (j=1; j<Ny-1; j++) {

248 puts(" \\draw[pktikzsurfacelines]");

249 for (i =0; i< Nx; i++) {

250 printf(" (%g,%g) hs\n",

251 pkRealVectorGetComponent (r[i] [j]1) [0],
252 pkRealVectorGetComponent (r[i] [j1) [1],
253 (1i<Nx=-1)7"==": """),

254 ¥

255 b

256

257 puts(C " %");

258 puts(C " % Apex position ’t’.");

259 putsC " %");

260 printf(" \\draw[pktikzbasisvector,->]\n"

261 " (t) -- (%g,%g);\n",

262 pkRealVectorGetComponent (e3) [0],

263 pkRealVectorGetComponent (e3) [1]);

264 printf(" \\path (t) coordinate[mypoint,label=left:$%s$];\n",
265 pkRealVectorGetName (t));

266 putsC " %");

267 puts(" % ’z’-contour path ’c’.");

268 puts(C " %");

269 puts(" \\draw[pktikzemphvectorcolor] plot[smooth] coordinates {");
270 for (i =0; i< Nc; i++) {

271 printf(" (%g,hg) hs\n",

272 pkRealVectorGetComponent (c[i]) [0],

273 pkRealVectorGetComponent (c[i]) [1],

274 (i<Nc-1)7™" " }F"),

275 ¥

276 printf(" \\path (%g,%g) node[below,pktikzemphvectorcolor]{$\\vecc(\\sigma;z)$};\n",
277 pkRealVectorGetComponent (c [Nc-2]) [0],

278 pkRealVectorGetComponent (c [Nc-21) [1]);
279 puts(C " %");

280 puts(" % ’x’-gradient path ’g’.");

281 putsC " %");

282 puts(" \\draw[pktikzemphvectorcolor] plot[smooth] coordinates {");
283 for (i =0; i< Ng; i++) {

284 printf(" (%g,%g)%hs\n",

285 pkRealVectorGetComponent (g[i]) [0],

286 pkRealVectorGetComponent (g[i]) [1],

24

287 (i<Ng‘1)?"" L };u);

288 b

289 printf(" \\path (%g,%g) nodel[right=1lex,pktikzemphvectorcolor]{$\\vecg(\\gamma;x,y)$};
290 pkRealVectorGetComponent (g[4]) [0],

291 pkRealVectorGetComponent (g[4]) [1]);

292

293 puts(C " %");

294 puts(C " % Position vector ’x’.");

295 puts(" YADR

296 printf(" \\path (x) coordinate[mypoint,label=below right:$%s$];\n",
297 pkRealVectorGetName(x));

298 puts(C "\\end{PkTikzpicturel}");

299

300 } else {

301

302 puts("ERROR: ’pkRealVectorsUnderLineOfSightBasis1()’ failed.");

303

304 }

Finally, clean up.

305 pkRealVectorFreel(el);

306 pkRealVectorFreel(e2);

307 pkRealVectorFreel(e3);

308 pkRealVectorFreel(t);

309 for (i =0; 1 <Nx; i++) {
310 for (j =0; j<Ny; j++) {
311 pkRealVectorFreel (r[i] [j]);
312 }

313 }

314 pkRealVectorFreel(x);

315 pkRealVectorFreel (x1) ;

316 pkRealVectorFreel (x2);

317 pkRealVectorFreel (x3) ;

318 pkRealVectorFreel (x12) ;

319 for (i =0; 1< Nc; i++)

320 pkRealVectorFreel(c[i]);

321 for (i =0; i< Ng; i++)

322 pkRealVectorFreel(glil);

323

324 return;

325}

326

327 [Km */
328

329 int main(const int argc, const char *argv[])
330 {

331 _diagram() ;

332 exit(0);

333}

This simple UNIX “makefile” captures the necessary file dependencies, and demonstrates how to
compile the C files.

Generic Make targets.

1 all: embedded-surfaces-in-R3.pdf

3 clobber: latexclobber

25

© 00 N O Ut

10

11
12
13
14
15
16
17
18
19
20

21
22

Orm -f *.0
@rm -f *.run paraboloid.tex
@rm -f *.core

backup: clobber
OPACKDIR=‘basename \‘pwd\‘‘ && cd .. && tar -czvf ${TARPATH} $${PACKDIR}

File based Make targets.

embedded-surfaces-in-R3.pdf: paraboloid.tex Makefile.demo embedded-surfaces-in-R3.bib

Implicit rule targets.

.SUFFIXES: .c .o .run .tex

.c.o:
clang -c -DDEBUG=2 -I/usr/local/pklib/include -DFreeBSD -o ${@} ${<}
.o.run:
clang -DDEBUG=2 -I/usr/local/pklib/include -DFreeBSD -o ${@} ${<} \
/usr/local/pklib/1ib/libpk.a \
/usr/local/pklib/1ib/libpkmath.a \
-1lm
.run.tex:

/8{<> > ¢${@}

Incorporate PKIATEX v AKE.[P)

Added by ’pklatexmake.mk’. Do not delete. 26Jull6
.include "/usr/local/pklatexmake/lib/pklatexmake.mk"
References

Murray R. Spiegel. Schaum’s Outline Series—Mathematical Handbook of Formulas and Tables.
Number 07-060224-7. McGraw—Hill, 1968.

Paul Kotschy. The PKLIB C software library.

Paul Kotschy. PkTECHDOC: Literate programming for non-TEX programmers. Still to be
published.

Paul Kotschy. Rotational transformations in three dimensions. Still to be published.

Paul Kotschy. The PkIATEXMAKE package. Still to be published.

26

