

Abstract

STUDY OF CONTOUR AND GRADIENT PATHS on surfaces embedded in \mathbb{R}^3 is presented.¹ An interesting formula is introduced for the gradient path passing over any point of interest in the embedded surface. A systematic procedure is introduced for calculating both contour and gradient paths. The surface itself, the contour path, and the gradient path exist as geometrical objects in their own right, independent of the choice of coordinates. However, they admit a specific set of coordinates which seem "natural" to the surface. This is studied. The commutitivity of contour path and gradient path traversal for a flat plane and for an inverted parabola is analysed.

 $^{^{1}}$ paul.kotschy@gmail.com

Contents

1	Introduction	3
2	Contour path	3
3	Gradient path	4
4	Natural coordinates	6
5	Commutivity of path traversals	6
6	Embedded flat plane	6
7	Embedded inverted paraboloid	9
8	Acknowledgments	16
9	Appendix—Computed drawing with $I\!\!AT_{E}X$, $TikZ$, $pkTikZ$ and PKREALVECTOR	17

1 Introduction

Part of a surface S embedded in \mathbb{R}^3 may be specified with the functional association

$$z: (x, y) \mapsto z(x, y), \quad x, y, z(x, y) \in \mathbb{R}$$

$$\tag{1}$$

The surface itself is a subset of the \mathbb{R}^3 vector space, and is given by

$$S = \{ (x, y, z) \, | \, z = (x, y)) \}$$

As a member of S, the triple (x, y, z(x, y)) is called a point on S, and may be represented geometrically by a position vector $\mathbf{x} \in \mathbb{R}^3$ derived from the (x, y, z(x, y)) triple as the linear combination

$$\mathbf{x}(x,y) = x\mathbf{\hat{1}} + y\mathbf{\hat{2}} + z(x,y)\mathbf{\hat{3}}$$
(2)

where $\{\hat{1}, \hat{2}, \hat{3}\}$ is the usual orthonormal vector basis for \mathbb{R}^3 .

As either of the x or y in the (x, y) pair in (1) varies continuously, it traces out a path (or curve) over S specified by (2). These paths shall be of primary interest in this work.

Two tractable examples of such embedded surface sets are the flat plane and the inverted paraboloid centred at the origin. Two specific instances of these are:

$$\mathcal{L}(h) = \{ (x, y, z) \mid z = h - x - y \}$$

$$\mathcal{P}(h) = \{ (x, y, z) \mid z = \frac{1}{h} \left(h^2 - x^2 - y^2 \right) \}$$
(3)

for some parameter $h \in \mathbb{R}$. In this work, I shall use $\mathcal{L}(h)$ and $\mathcal{P}(h)$ as case studies. Parts of a flat plane and an inverted paraboloid are depicted in Figure 1 (page 6) and Figure 2 (page 9).

In such depictions, x and y are obvious candidates to coordinatise S. But they are merely coordinates. The surfaces exist as entities in their own right, independently of the choice of coordinates. What is important is what defines a surface, namely, a specification of the association $z: (x, y) \mapsto z(x, y)$. For example, suppose while working with S, it is convenient to use s and t as coordinates, where s could stand for spatial path separation, say, and t for time. Then a surface embedded in \mathbb{R}^3 is

$$\{(x, y, z) \mid z = z(x, y), \ x = x(s, t), \ y = y(s, t)\}$$

and the geometrical representation becomes

ł

$$\mathbf{x}(s,t) = \mathbf{x}(x(s,t), y(s,t)) = x(s,t)\mathbf{\hat{1}} + y(s,t)\mathbf{\hat{2}} + z(x(s,t), y(s,t))\mathbf{\hat{3}}$$

where the association

$$(s,t) \mapsto (x(s,t), y(s,t))$$

is called the coordinate transformation from s and t to x and y.

Does the surface offer any coordinate systems which seem natural for the surface? Suppose you are hiking in mountainous terrain. Then a natural inclination might be to find a route which either maintains a constant height, or which offers the most direct ascent or descent. The former route would follow a *contour path*, while the latter route would follow a *gradient path*.

2 Contour path

If a point (x_0, y_0, z_0) lies on our surface S, then it must satisfy (1):

$$z: (x_0, y_0) \mapsto z(x_0, y_0) = z_0$$

The corresponding position vector is

$$\mathbf{x}_0 = \mathbf{x}(x_0, y_0) = x_0 \mathbf{\hat{1}} + y_0 \mathbf{\hat{2}} + z(x_0, y_0) \mathbf{\hat{3}} = x_0 \mathbf{\hat{1}} + y_0 \mathbf{\hat{2}} + z_0 \mathbf{\hat{3}}$$

But in general, there are other points (x, y) which satisfy $z(x, y) = z_0$. Therefore, we may meaningfully define the *contour at* z_0 as the set

$$\mathcal{C}(z_0) = \{(x, y, z_0) \,|\, z(x, y) = z_0\}$$

The embedded surface S is a two-dimensional object because two independent parameters are needed for its specification. But the contour $C(z_0)$ is one-dimensional because the condition $z(x, y) = z_0$ affirms a relation between x and y. So if we choose σ as the single independent variable, say, then σ traces out a path specified by the position vector $\mathbf{c} \in \mathbb{R}^3$ given by

$$\mathbf{c}(\sigma; z_0) = c_1(\sigma; z_0)\mathbf{\hat{1}} + c_2(\sigma; z_0)\mathbf{\hat{2}} + z_0\mathbf{\hat{3}}$$

$$\tag{4}$$

I shall call this the z_0 -contour path of S. For example, suppose the point (x_0, y_0, z_0) lies on our flat plane $\mathcal{L}(h)$ (Eq. (3)), then (x_0, y_0, z_0) must satisfy

$$x_0 + y_0 = h - z_0$$

So $\mathcal{L}(h)$'s z_0 -contour is the set $\{(x, y, z_0) | x + y = h - z_0\}$, and $\mathcal{L}(h)$'s z_0 -contour path may be specified by the position vector

$$\mathbf{c}(\sigma; z_0) = c_1(\sigma; z_0)\mathbf{\hat{1}} + (h - z_0 - c_1(\sigma; z_0))\mathbf{\hat{2}} + z_0\mathbf{\hat{3}}$$

Equation (4) specifies a continuous variation of the position vector $\mathbf{c}(\sigma; z_0)$ with σ . This variation of a vector quantity along a path is perhaps the most natural one.

Another vector variation is the rate of change of the position vector, aligned with the direction of travel along the contour over S. For any arbitrary path over S, coordinatised by s, say, the path's tangent vector is

$$\frac{\mathrm{d}\mathbf{x}(s)}{\mathrm{d}s} = \frac{\mathrm{d}}{\mathrm{d}s}\mathbf{x}(x(s), y(s)) = \frac{\mathrm{d}x}{\mathrm{d}s}\mathbf{\hat{1}} + \frac{\mathrm{d}y}{\mathrm{d}s}\mathbf{\hat{2}} + \left(\frac{\partial z}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}s} + \frac{\partial z}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}s}\right)\mathbf{\hat{3}}$$
$$= \frac{\mathrm{d}x}{\mathrm{d}s}\mathbf{\hat{1}} + \frac{\mathrm{d}y}{\mathrm{d}s}\mathbf{\hat{2}} + \nabla_{(x,y)}z(x,y)\cdot\left(\frac{\mathrm{d}x}{\mathrm{d}s}\mathbf{\hat{1}} + \frac{\mathrm{d}y}{\mathrm{d}s}\mathbf{\hat{2}}\right)\mathbf{\hat{3}}$$

From (4), the $\hat{\mathbf{3}}$ -component of the tangent vector along the z_0 -contour path must vanish, giving

$$\frac{\mathrm{d}\mathbf{c}(\sigma;z_0)}{\mathrm{d}\sigma} = \frac{\mathrm{d}c_1(\sigma;z_0)}{\mathrm{d}\sigma}\mathbf{\hat{1}} + \frac{\mathrm{d}c_2(\sigma;z_0)}{\mathrm{d}\sigma}\mathbf{\hat{2}}$$
(5)

3 Gradient path

The two vector quantities (4) and (5) pertain to the z_0 -contour path. There is another path over our embedded surface S, now parametrised by γ , say, passing through the position \mathbf{x}_0 , and whose tangent vector is orthogonal to the z_0 -contour path's tangent vector. Call this path the \mathbf{x}_0 -gradient path \mathbf{g} , and write

$$\mathbf{g}(\gamma; x_0, y_0) = g_1(\gamma; x_0, y_0)\mathbf{\hat{1}} + g_2(\gamma; x_0, y_0)\mathbf{\hat{2}} + z(g_1, g_2)\mathbf{\hat{3}}$$

for some as yet unspecified g_1, g_2 . Once again, a tangent vector along **g** is

$$\frac{\mathrm{d}\mathbf{g}(\gamma;x_0,y_0)}{\mathrm{d}\gamma} = \frac{\mathrm{d}g_1}{\mathrm{d}\gamma}\mathbf{\hat{1}} + \frac{\mathrm{d}g_2}{\mathrm{d}\gamma}\mathbf{\hat{2}} + \frac{\mathrm{d}z(g_1,g_2)}{\mathrm{d}\gamma}\mathbf{\hat{3}}$$

Now consider another vector field over \mathcal{S} defined by:

$$\mathbf{G}(x,y) = rac{\partial z}{\partial x}\mathbf{\hat{1}} + rac{\partial z}{\partial y}\mathbf{\hat{2}} + G_3(x,y)\mathbf{\hat{3}}$$

for some as yet unspecified $G_3(x, y)$, and consider its value at the point (x_0, y_0, z_0) on \mathcal{S} . Then

$$\mathbf{G}(x_0, y_0) \cdot \frac{\mathrm{d}\mathbf{c}(\sigma_0; z_0)}{\mathrm{d}\sigma} = \frac{\partial z(x_0, y_0)}{\partial x} \frac{\mathrm{d}c_1(\sigma_0; z_0)}{\mathrm{d}\sigma} + \frac{\partial z(x_0, y_0)}{\partial y} \frac{\mathrm{d}c_2(\sigma_0; z_0)}{\mathrm{d}\sigma}$$
$$= \frac{\mathrm{d}z(c_1(\sigma_0; z_0), c_2(\sigma_0; z_0))}{\mathrm{d}\sigma}$$
$$= \frac{\mathrm{d}z_0}{\mathrm{d}\sigma}$$
$$= 0$$

This inner product vanishes because σ parametrises the $\mathbf{c}(\sigma; z_0)$ contour path, and on that path, $z = z_0$. So **G** is orthogonal to **c** at the position \mathbf{x}_0 . But **G** is not yet necessarily tangential to **g** at \mathbf{x}_0 . For it to be tangential to **g**, it would have to align with $d\mathbf{g}/d\gamma$. The alignment is obviously satisfied if we define **g** by equating **G** with $d\mathbf{g}/d\gamma$ at \mathbf{x}_0 . That is:

$$\frac{\mathrm{d}g_1(\gamma_0, x_0, y_0)}{\mathrm{d}\gamma} = \frac{\partial z(x_0, y_0)}{\partial x}$$
$$\frac{\mathrm{d}g_2(\gamma_0, x_0, y_0)}{\mathrm{d}\gamma} = \frac{\partial z(x_0, y_0)}{\partial y}$$
$$\frac{\partial z(x_0, y_0)}{\partial x} \frac{\mathrm{d}g_1(\gamma_0, x_0, y_0)}{\mathrm{d}\gamma} + \frac{\partial z(x_0, y_0)}{\partial y} \frac{\mathrm{d}g_2(\gamma_0, x_0, y_0)}{\mathrm{d}\gamma} = G_3(x_0, y_0)$$

giving

$$G_3(x_0, y_0) = \left[\nabla_{(x,y)} z(x_0, y_0) \right]^2$$

So a tangent vector to our desired path $\mathbf{g}(\gamma; x, y)$ at \mathbf{x}_0 is

$$\frac{\mathrm{d}\mathbf{g}(\gamma_0; x_0, y_0)}{\mathrm{d}\gamma} = \frac{\partial z(x_0, y_0)}{\partial x}\,\mathbf{\hat{1}} + \frac{\partial z(x_0, y_0)}{\partial y}\,\mathbf{\hat{2}} + \left[\nabla_{(x,y)} z(x_0, y_0)\right]^2\mathbf{\hat{3}}$$

Since the point (x_0, y_0, z_0) on S is arbitrarily chosen, the result also holds for the point (x, y, z) on S. We may therefore drop the "₀" subscript.

To summarise, at any sufficiently well-behaved point (x, y, z) on the surface S, the surface provides two natural paths. The paths are independent of the choice of coordinate system, and both are specified by two corresponding orthogonal tangent vectors:

1. z-contour path parametrised by σ , say:

$$\mathbf{c}(\sigma;z) = c_1(\sigma;z)\mathbf{\hat{1}} + c_2(\sigma;z)\mathbf{\hat{2}} + z\mathbf{\hat{3}}$$
(6)

2. Tangent vector of z-contour path:

$$\frac{\mathrm{d}\mathbf{c}(\sigma;z)}{\mathrm{d}\sigma} = \frac{\mathrm{d}c_1(\sigma;z)}{\mathrm{d}\sigma}\mathbf{\hat{1}} + \frac{\mathrm{d}c_2(\sigma;z)}{\mathrm{d}\sigma}\mathbf{\hat{2}} + 0\mathbf{\hat{3}}$$
(7)

3. **x**-gradient path parametrised by γ , say:

$$\mathbf{g}(\gamma; x, y) = g_1(\gamma; x, y)\mathbf{\hat{1}} + g_2(\gamma; x, y)\mathbf{\hat{2}} + z(g_1, g_2)\mathbf{\hat{3}}$$
(8)

4. Tangent vector of **x**-gradient path:

$$\frac{\mathrm{d}\mathbf{g}(\gamma; x, y)}{\mathrm{d}\gamma} = \frac{\mathrm{d}g_1(\gamma; x, y)}{\mathrm{d}\gamma} \mathbf{\hat{1}} + \frac{\mathrm{d}g_2(\gamma; x, y)}{\mathrm{d}\gamma} \mathbf{\hat{2}} + \frac{\mathrm{d}z(g_1, g_2)}{\mathrm{d}\gamma} \mathbf{\hat{3}}
= \frac{\partial z(x, y)}{\partial x} \mathbf{\hat{1}} + \frac{\partial z}{\partial y} \mathbf{\hat{2}} + \left[\nabla_{(x, y)} z(x, y)\right]^2 \mathbf{\hat{3}}$$
(9)

In Sections 6 and 7, this summary will be used to calculate contour and gradient paths for $\mathcal{L}(h)$ and $\mathcal{P}(h)$.

4 Natural coordinates

As discussed earlier (page 3, and Eqs. (6) and (8)), the z-contour path $\mathbf{c}(\sigma; z)$ passes through the point (x, y, z) on \mathcal{S} . While tracing out the path, the $\hat{\mathbf{s}}$ -component of our position vector remains constant at z, and our direction of travel aligns with the tangent vector $d\mathbf{c}(\sigma; z)/d\sigma$. The **x**-gradient path $\mathbf{g}(\gamma; x, y)$ also passes through (x, y, z), and is the path of most direct ascent or descent with respect to the $\hat{\mathbf{s}}$ -component of our position vector \mathbf{x} on \mathcal{S} . And while tracing out that path, our direction of travel aligns with $d\mathbf{g}(\gamma; x, y)/d\gamma$.

We wish now to coordinatise our "travel experience" on S with coordinates which are associated with these two natural paths. The procedure is to define the three normalised orthogonal vectors at the position \mathbf{x} :

$$\hat{\mathbf{c}}(\mathbf{x}) = \frac{\mathrm{d}\mathbf{c}(\sigma_0; z)}{\mathrm{d}\sigma} \middle/ \left| \frac{\mathrm{d}\mathbf{c}(\sigma_0; z)}{\mathrm{d}\sigma} \right|
\hat{\mathbf{g}}(\mathbf{x}) = \frac{\mathrm{d}\mathbf{g}(\gamma_0; z)}{\mathrm{d}\gamma} \middle/ \left| \frac{\mathrm{d}\mathbf{g}(\gamma_0; z)}{\mathrm{d}\gamma} \right|
\hat{\mathbf{n}}(\mathbf{x}) = \hat{\mathbf{c}}(\mathbf{x}) \times \hat{\mathbf{g}}(\mathbf{x})$$
(10)

and then to express \mathbf{x} under the $\{\hat{\mathbf{c}}, \hat{\mathbf{g}}, \hat{\mathbf{n}}\}$ orthornomal vector basis, and finally to compute \mathbf{x} 's coordinates relative to this basis. This will be done for $\mathcal{L}(h)$ and $\mathcal{P}(h)$ in Sections 6 and 7 below.

5 Commutivity of path traversals

As will be shown later, in the Euclidean $\hat{12}$ coordinate plane, a traversal along a contour path commutes with a traversal along a gradient path. This commutivity does not carry over to non-Euclidean surfaces.

To demonstrate this, introduce traversal length l as a natural path parameter. Suppose that some path over our embedded surface S is parametrised by τ , i.e., $\mathbf{x} = \mathbf{x}(\tau)$ for $\tau \in \mathbb{R}$. Then a corresponding tangent vector along the path is $d\mathbf{x}(\tau)/d\tau$. The length of traversal over a portion of the path is then

$$l(\tau_0, \tau) = \int_{\tau_0}^{\tau} \left| \frac{\mathrm{d}\mathbf{x}(\bar{\tau})}{\mathrm{d}\bar{\tau}} \right| \mathrm{d}\bar{\tau}$$
(11)

This provides us with traversal length as a function of the arbitrary parameter τ and some initial value τ_0 . In principle, this relationship can be inverted to give τ as a function of l. The path over S can then be parametrised with l as $\mathbf{x} = \mathbf{x}(\tau(l)) = \mathbf{x}(l)$.

Next, define the two coordinate mappings over S:

$$\mathcal{C}(l) : \mathbf{x} \mapsto \mathcal{C}(l)\mathbf{x} = \mathbf{c}(l; z)$$

$$\mathcal{G}(m) : \mathbf{x} \mapsto \mathcal{G}(m)\mathbf{x} = \mathbf{g}(m; x, y)$$
(12)

Here, the contour path **c** and gradient path **g** passing through the position **x** are now parametrised by lengths l and m, respectively. I.e., $\mathbf{c}(l; z) = \mathbf{c}(\sigma(l); z)$ (Eq. (6)) and $\mathbf{g}(m; x, y) = \mathbf{g}(\gamma(m); x, y)$ (Eq. (8)). The commutivity of contour and gradient path traversals may then be analysed by calculating the difference

$$(\mathcal{G}(m)\mathcal{C}(l) - \mathcal{C}(l)\mathcal{G}(m))\mathbf{x}$$

This will be done in Sections 6 and 7.

6 Embedded flat plane

Given its simplicity, the embedded flat plane $\mathcal{L}(h)$ (Eq. (3)) offers a useful—albeit, mundane starting point for studying contour and gradient paths. Part of a typical flat plane is shown in Figure 1.

Figure 1: Flat plane $\mathcal{L}(h)$ specified by (3), showing a contour path $\mathbf{c}(\sigma; z)$ and a gradient path $\mathbf{g}(\gamma; x, y)$ intersecting orthogonally at the point \mathbf{x} on $\mathcal{L}(h)$. Both \mathbf{c} and \mathbf{g} were calculated using (6), (7), (8) and (9).

Contour path. From (6), a z-contour path on $\mathcal{L}(h)$ is, say,

$$\mathbf{c}(\sigma; z) = (x - \sigma)\mathbf{\hat{1}} + \mu(\sigma)\mathbf{\hat{2}} + (h - (x - \sigma) - \mu(\sigma))\mathbf{\hat{3}}$$

The $\hat{\mathbf{i}}$ -component is parametrised as $(x - \sigma)$ so that the $\hat{\mathbf{i}}$ -component decreases with increasing σ , in keeping with Figure 1. But indeed, we are free to specify the functional dependence of the $\hat{\mathbf{i}}$ -component on σ however we please. Being a contour path, the $\hat{\mathbf{3}}$ -component must be constant with respect to σ (c.f. (7)):

$$\frac{\mathrm{d}}{\mathrm{d}\sigma} \left(h - (x - \sigma) - \mu \right) = 0 \quad \Rightarrow \quad \mu(\sigma) = y + \sigma$$

A z-contour path is therefore

$$\mathbf{c}(\sigma; z) = (x - \sigma)\mathbf{\hat{1}} + (y + \sigma)\mathbf{\hat{2}} + z\mathbf{\hat{3}}$$
(13)

And a corresponding tangent vector is

$$\frac{\mathrm{d}\mathbf{c}(\sigma;z)}{\mathrm{d}\sigma} = -\mathbf{\hat{1}} + \mathbf{\hat{2}} \tag{14}$$

Gradient path. For an x-gradient path on $\mathcal{L}(h)$, we must calculate the partial derivaties

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} = -1$$

giving a tangent vector of \mathbf{g} , using (9), as

$$\frac{\mathrm{d}\mathbf{g}(\gamma; x, y)}{\mathrm{d}\gamma} = -\mathbf{\hat{1}} - \mathbf{\hat{2}} + 2\mathbf{\hat{3}}$$
(15)

From this tangent vector, it is easy to calculate an **x**-gradient path on $\mathcal{L}(h)$ as

$$\mathbf{g}(\gamma; x, y) = (x - \gamma)\mathbf{\hat{1}} + (y - \gamma)\mathbf{\hat{2}} + (h - x - y + 2\gamma)\mathbf{\hat{3}}$$
(16)

And as expected, the z-contour and \mathbf{x} -gradient paths intersect orthogonally at \mathbf{x} :

$$\begin{aligned} \mathbf{c}(0;z) &= x\hat{\mathbf{1}} + y\hat{\mathbf{2}} + z\hat{\mathbf{3}} \\ \mathbf{g}(0;x,y) &= x\hat{\mathbf{1}} + y\hat{\mathbf{2}} + (h - x - y)\hat{\mathbf{3}} = x\hat{\mathbf{1}} + y\hat{\mathbf{2}} + z\hat{\mathbf{3}} \\ \frac{\mathrm{d}\mathbf{c}(0;z)}{\mathrm{d}\sigma} \cdot \frac{\mathrm{d}\mathbf{g}(0;x,y)}{\mathrm{d}\gamma} &= (-\hat{\mathbf{1}} + \hat{\mathbf{2}}) \cdot (-\hat{\mathbf{1}} - \hat{\mathbf{2}} + 2\hat{\mathbf{3}}) = 0 \end{aligned}$$

Natural coordinates. Using (10), the three normalised orthonormal basis vectors at position \mathbf{x} on $\mathcal{L}(h)$ were calculated as:

$$\begin{aligned} \hat{\mathbf{c}}(x,y) &= \frac{1}{\sqrt{2}}(-\hat{\mathbf{1}} + \hat{\mathbf{2}}) \\ \hat{\mathbf{g}}(x,y) &= \frac{1}{\sqrt{6}}(-\hat{\mathbf{1}} - \hat{\mathbf{2}} + 2\hat{\mathbf{3}}) \\ \hat{\mathbf{n}}(x,y) &= \frac{1}{\sqrt{3}}(\hat{\mathbf{1}} + \hat{\mathbf{2}} + \hat{\mathbf{3}}) \end{aligned}$$

To express \mathbf{x} under $\{\mathbf{\hat{c}}, \mathbf{\hat{g}}, \mathbf{\hat{n}}\}$, write

$$\mathbf{x}(x,y) = x\mathbf{\hat{1}} + y\mathbf{\hat{2}} + z(x,y)\mathbf{\hat{3}} = x\mathbf{\hat{1}} + y\mathbf{\hat{2}} + (h-x-y)\mathbf{\hat{3}}$$
$$= u(x,y)\mathbf{\hat{c}} + v(x,y)\mathbf{\hat{g}} + w(x,y)\mathbf{\hat{n}}$$

The resulting system of equations to be solved for u, v and w is

$$-\sqrt{3}u - v + \sqrt{2}w = \sqrt{6}x$$
$$\sqrt{3}u - v + \sqrt{2}w = \sqrt{6}y$$
$$2v + \sqrt{2}w = \sqrt{6}z$$

Solving this system for u, v and w gives

$$\mathbf{x}(x,y) = \frac{-x+y}{\sqrt{2}}\mathbf{\hat{c}}(x,y) + \frac{2h-3x-3y}{\sqrt{6}}\mathbf{\hat{g}}(x,y) + \frac{h}{\sqrt{3}}\mathbf{\hat{n}}(x,y)$$

Path traversal commutivity. On $\mathcal{L}(h)$, using (14), it is easy to calculate the length along the *z*-contour as

$$l(0,\sigma) = \int_0^\sigma \left| \frac{\mathrm{d}\mathbf{c}(\bar{\sigma};z)}{\mathrm{d}\bar{\sigma}} \right| \mathrm{d}\bar{\sigma} = \sqrt{2}\sigma$$

This path length offers a natural parametrisation of the z-contour path on $\mathcal{L}(h)$. From (13),

$$\mathbf{c}(l;z) = \mathbf{c}(\sigma(l);z) = \left(x - l/\sqrt{2}\right)\mathbf{\hat{1}} + \left(y + l/\sqrt{2}\right)\mathbf{\hat{2}} + z\mathbf{\hat{3}}$$

On $\mathcal{L}(h)$, using (15), the length along the **x**-gradient is

$$m(0,\gamma) = \int_0^\gamma \left| \frac{\mathrm{d}\mathbf{g}(\bar{\gamma};x,y)}{\mathrm{d}\bar{\gamma}} \right| \mathrm{d}\bar{\gamma} = \sqrt{6}\,\gamma$$

and a natural parametrisation of the x-gradient path on $\mathcal{L}(h)$ becomes, using (16),

$$\mathbf{g}(m;x,y) = \mathbf{g}(\gamma(m);x,y) = \left(x - m/\sqrt{6}\right)\mathbf{\hat{1}} + \left(y - m/\sqrt{6}\right)\mathbf{\hat{2}} + \left(h - x - y + 2m/\sqrt{6}\right)\mathbf{\hat{3}}$$
(17)

As per (12), define the coordinate mappings over $\mathcal{L}(h)$:

$$\begin{aligned} \mathcal{C}(l) &: \mathbf{x} \mapsto \mathcal{C}(l)\mathbf{x} = \mathbf{c}(l; z) \\ \mathcal{G}(m) &: \mathbf{x} \mapsto \mathcal{G}(m)\mathbf{x} = \mathbf{g}(m; x, y) \end{aligned}$$

A traversal of length l over the z-contour path, starting at position **x**, followed by a traversal of length m over the $\mathbf{c}(l; z)$ -gradient path is

$$\begin{aligned} \mathcal{G}(m)\mathcal{C}(l)\mathbf{x} &= \mathcal{G}(m) \left[\left(x - l/\sqrt{2} \right) \mathbf{\hat{1}} + \left(y + l/\sqrt{2} \right) \mathbf{\hat{2}} + z\mathbf{\hat{3}} \right] \\ &= \left[\left(x - l/\sqrt{2} \right) - m/\sqrt{6} \right] \mathbf{\hat{1}} + \left[\left(y + l/\sqrt{2} \right) - m/\sqrt{6} \right] \mathbf{\hat{2}} \\ &+ \left[h - \left(x - l/\sqrt{2} \right) - \left(y + l/\sqrt{2} \right) + 2m/\sqrt{6} \right] \mathbf{\hat{3}} \\ &= \left[x - l/\sqrt{2} - m/\sqrt{6} \right] \mathbf{\hat{1}} + \left[y + l/\sqrt{2} - m/\sqrt{6} \right] \mathbf{\hat{2}} + \left[h - x - y + 2m/\sqrt{6} \right] \mathbf{\hat{3}} \end{aligned}$$

And a traversal of length m over the **x**-gradient path, starting at position **x**, followed by a traversal of length l over the $\mathbf{g}_3(m; x, y)$ -contour path is

$$\mathcal{C}(l)\mathcal{G}(m)\mathbf{x} = \mathcal{C}(l)\left[\left(x - m/\sqrt{6}\right)\mathbf{\hat{1}} + \left(y - m/\sqrt{6}\right)\mathbf{\hat{2}} + \left(h - x - y + 2m/\sqrt{6}\right)\mathbf{\hat{3}}\right]$$

= $\left[(x - m/\sqrt{6}) - l/\sqrt{2}\right]\mathbf{\hat{1}} + \left[(y - m/\sqrt{6}) + l/\sqrt{2}\right]\mathbf{\hat{2}} + \left[h - x - y + 2m/\sqrt{6}\right]\mathbf{\hat{3}}$
= $\mathcal{G}(m)\mathcal{C}(l)\mathbf{x}$

This proves the contour and gradient path traversal commutivity in the Euclidean flat plane. This commutivity underlies a meaningful definition of geometrically extended objects in Euclidean space, such a vectors. However, as will be shown in the next section, in non-Euclidean space this cannot be done, and the notion of a vector must be restricted to a geometrically local object, namely, the tangent vector.

7 Embedded inverted paraboloid

A typical inverted paraboloid $\mathcal{P}(h)$ (c.f. Eq. (3)) is shown in Figure 2.

Intuition. For a paraboloid, expressions for the contour and gradient paths are easy to obtain intuitively. If r and θ are the polar coordinates defined by the coordinate transformation

$$x(r, \theta) = r \cos \theta$$
 and $y(r, \theta) = r \sin \theta$

then contour and gradient paths passing through a specified point $(\rho \cos \phi, \rho \sin \phi)$ are, respectively,

$$\bar{\mathbf{c}}(\theta;\rho) = \rho \cos \theta \,\hat{\mathbf{i}} + \rho \sin \theta \,\hat{\mathbf{2}} + \frac{1}{h}(h^2 - \rho^2)\hat{\mathbf{3}}$$

$$\bar{\mathbf{g}}(r;\phi) = \cos \phi \, r \,\hat{\mathbf{i}} + \sin \phi \, r \,\hat{\mathbf{2}} + \frac{1}{h}(h^2 - r^2)\hat{\mathbf{3}}$$
(18)

The notation " $\mathbf{\bar{c}}(\theta; \rho)$ " indicates that the contour path is parametrised by the θ polar coordinate, with ρ a constant. Similarly, the notation " $\mathbf{\bar{g}}(r; \phi)$ " indicates that the gradient path is parametrised by the *r* polar coordinate, with ϕ a constant. Clearly, as expected, $\mathbf{\bar{c}}(\phi; \rho) = \mathbf{\bar{g}}(\rho; \phi)$.

Respective tangent vectors at the point $(\rho \cos \phi, \rho \sin \phi)$ are:

$$\frac{\mathrm{d}\mathbf{c}(\theta;\rho)}{\mathrm{d}\theta} = -\rho\sin\theta\hat{\mathbf{1}} + \rho\cos\theta\hat{\mathbf{2}}$$
$$\frac{\mathrm{d}\mathbf{\bar{g}}(r;\phi)}{\mathrm{d}r} = \cos\phi\hat{\mathbf{1}} + \sin\phi\hat{\mathbf{2}} - \frac{2r}{h}\hat{\mathbf{3}}$$

And as expected, the two tangent vectors are orthogonal at the point $(\rho \cos \phi, \rho \sin \phi)$:

$$\frac{\mathrm{d}\bar{\mathbf{c}}(\theta;\rho)}{\mathrm{d}\theta} \cdot \frac{\mathrm{d}\bar{\mathbf{g}}(r;\phi)}{\mathrm{d}r} = \rho \sin\phi \cos\theta - \rho \cos\phi \sin\theta$$
$$= 0 \quad \text{whenever } \theta = \phi$$

But now I wish not to appeal to basic intuition, but rather to the prescription laid out in (6), (7), (8) and (9).

Figure 2: Inverted paraboloid $\mathcal{P}(h)$ specified by (3), showing a contour path $\mathbf{c}(\sigma; z)$ and a gradient path $\mathbf{g}(\gamma; x, y)$ intersecting orthogonally at the point \mathbf{x} on $\mathcal{P}(h)$. Both \mathbf{c} and \mathbf{g} were calculated using (6), (7), (8) and (9), and drawn computationally. As expected, the apex position \mathbf{t} lies on \mathbf{g} .

Contour path. Suppose that the point (x, y, z) lies on $\mathcal{P}(h)$. Then (x, y, z) must satisfy

$$z(x,y) = \frac{1}{h} \left[h^2 - x^2 - y^2 \right]$$

 $\mathcal{P}(h)$'s z-contour passing through the position $\mathbf{x} = x\mathbf{\hat{1}} + y\mathbf{\hat{2}} + z(x, y)\mathbf{\hat{3}}$ is the set $\{(x, y) | x^2 + y^2 = h(h - z)\}$. There is considerable latitude in specifying $\mathcal{P}(h)$'s z-contour path. We may choose that under a parametrisation, the path's $\mathbf{\hat{1}}$ -component varies as $x - \sigma$. Then in place of (6), we may write for a z-contour path on $\mathcal{P}(h)$:

$$\mathbf{c}(\sigma;z) = (x-\sigma)\mathbf{\hat{1}} + \mu(\sigma)\mathbf{\hat{2}} + \frac{1}{h} \left[h^2 - (x-\sigma)^2 - \mu^2(\sigma)\right]\mathbf{\hat{3}} \quad \text{for some } \mu(\sigma).$$

In keeping with Figure 2, the $\hat{\mathbf{i}}$ -component is parametrised as $x - \sigma$ so that the $\hat{\mathbf{i}}$ -component decreases with increasing σ . Being a contour path, the $\hat{\mathbf{3}}$ -component must be constant with respect to σ (c.f. (7)):

$$\frac{\mathrm{d}}{\mathrm{d}\sigma} \left(\frac{1}{h} \left[h^2 - (x - \sigma)^2 - \mu^2(\sigma) \right] \right) = 0$$

$$\Rightarrow \quad 2(x - \sigma) - 2\mu \frac{\mathrm{d}\mu}{\mathrm{d}\sigma} = 0$$

$$\Rightarrow \quad \int_y^{\mu(\sigma)} \mu \mathrm{d}\mu = \int_0^{\sigma} (x - \bar{\sigma}) \mathrm{d}\bar{\sigma}$$

$$\Rightarrow \quad \mu(\sigma) = \sqrt{x^2 + y^2 - (x - \sigma)^2} \quad \text{(Considering only the positive root for now.)}$$

This gives

$$\frac{1}{h} \left[h^2 - (x - \sigma)^2 - \mu^2(\sigma) \right] = \frac{1}{h} \left[h^2 - x^2 - y^2 \right] = z$$

as expected. A z-contour path and its corresponding tangent vector is therefore

$$\mathbf{c}(\sigma;z) = (x-\sigma)\mathbf{\hat{1}} + \sqrt{x^2 + y^2 - (x-\sigma)^2}\,\mathbf{\hat{2}} + z\mathbf{\hat{3}}$$

$$\frac{\mathrm{d}\mathbf{c}(\sigma;z)}{\mathrm{d}\sigma} = -\mathbf{\hat{1}} + \frac{x-\sigma}{\sqrt{x^2 + y^2 - (x-\sigma)^2}}\mathbf{\hat{2}}$$
(19)

To be sure, we could have chosen, say,

$$\mathbf{c}(u;z) = \sqrt{x^2 + y^2 - u^2} \,\mathbf{\hat{1}} \,+\, u\mathbf{\hat{2}} + z\mathbf{\hat{3}}$$

as an alternative but equally valid parametrisation.

Gradient path. For an x-gradient path on $\mathcal{P}(h)$, we must calculate the partial derivatives

$$\frac{\partial z}{\partial x} = -\frac{2x}{h}$$
 and $\frac{\partial z}{\partial y} = -\frac{2y}{h}$

A tangent vector of \mathbf{g} is, using (9),

$$\frac{\mathrm{d}\mathbf{g}(\gamma;x,y)}{\mathrm{d}\gamma} = -\frac{2g_1(\gamma)}{h}\mathbf{\hat{1}} - \frac{2g_2(\gamma)}{h}\mathbf{\hat{2}} + \frac{4}{h^2}\left[g_1^2(\gamma) + g_2^2(\gamma)\right]\mathbf{\hat{3}}$$

This can easily be solved for g_1 and g_2 :

$$\frac{\mathrm{d}g_1(\gamma)}{\mathrm{d}\gamma} = -\frac{2g_1(\gamma)}{h}$$

$$\Rightarrow \quad \int_x^{g_1(\gamma)} \frac{\mathrm{d}g}{g} = -\frac{2}{h} \int_{\gamma_0}^{\gamma} \mathrm{d}\bar{\gamma}$$

$$\Rightarrow \quad g_1(\gamma; x, y) = x e^{-2(\gamma - \gamma_0)/h}$$

Similarly, $g_2(\gamma; x, y) = y e^{-2(\gamma - \gamma_0)/h}$. An **x**-gradient path is therefore, from (8),

$$\mathbf{g}(\gamma; x, y) = x e^{-2(\gamma - \gamma_0)/h} \, \mathbf{\hat{1}} + y e^{-2(\gamma - \gamma_0)/h} \, \mathbf{\hat{2}} + \frac{1}{h} \left[h^2 - (x^2 + y^2) e^{-4(\gamma - \gamma_0)/h} \right] \mathbf{\hat{3}}$$

Provided that the parametrisation satisfies $\sigma_0 = 0$, it is clear that $\mathbf{c}(\sigma; z)$ and $\mathbf{g}(\gamma; x, y)$ intersect at the point on $\mathcal{P}(h)$ specified by (σ_0, γ_0) , i.e., $\mathbf{c}(\sigma_0; z) = \mathbf{g}(\gamma_0; x, y)$. If we apply the coordinate transformation $e^{-2(\gamma - \gamma_0)/h} \mapsto \gamma$, with $\gamma_0 \to 1$, then the **x**-gradient path and its corresponding tangent vector is

$$\mathbf{g}(\gamma; x, y) = x\gamma \mathbf{\hat{1}} + y\gamma \mathbf{\hat{2}} + \frac{1}{h} \left[h^2 - (x\gamma)^2 - (y\gamma)^2 \right] \mathbf{\hat{3}}$$

$$= x\gamma \mathbf{\hat{1}} + y\gamma \mathbf{\hat{2}} + z(x\gamma, y\gamma) \mathbf{\hat{3}}$$

$$\frac{\mathrm{d}\mathbf{g}(\gamma; x, y)}{\mathrm{d}\gamma} = x\mathbf{\hat{1}} + y\mathbf{\hat{2}} - \frac{2(x^2 + y^2)\gamma}{h} \mathbf{\hat{3}}$$
(20)

And at that point, their respective tangent vectors are orthogonal:

$$\frac{\mathrm{d}\mathbf{c}(0;z)}{\mathrm{d}\sigma} \cdot \frac{\mathrm{d}\mathbf{g}(1;x,y)}{\mathrm{d}\gamma} = \left(\mathbf{\hat{1}} - \frac{x}{y}\mathbf{\hat{2}}\right) \cdot \left(x\mathbf{\hat{1}} + y\mathbf{\hat{2}} - \frac{2(x^2 + y^2)}{h}\mathbf{\hat{3}}\right) = 0$$

The prescription (6)...(9) was used to compute the paths (19) and (20), as shown in Figure 2. Refer to the Appendix on page 17 for details on the computations.

The prescription agrees with intuition. To prove correspondence between the two contour paths $\bar{\mathbf{c}}$ and \mathbf{c} , and between the two gradient paths $\bar{\mathbf{g}}$ and \mathbf{g} , it is sufficient to prove coincidence between respective positions on the pairs of paths. Comparing (18) and (19), a position on $\bar{\mathbf{c}}$ coincides with a position on \mathbf{c} whenever

$$\rho \cos \theta = \sigma, \ \rho \sin \theta = \sqrt{x^2 + y^2 - \sigma^2}, \ \text{and} \ \frac{1}{h}(h^2 - \rho^2)$$

That is, whenever

$$\rho^2 = x^2 + y^2$$

and

$$\tan \theta = \frac{\sqrt{x^2 + y^2 - \sigma^2}}{\sigma} \quad \Leftarrow \quad \theta = \arccos(\sigma/\sqrt{x^2 + y^2})$$

That is, the following two contour paths correspond:

$$\bar{\mathbf{c}}(\theta; \sqrt{x^2 + y^2}) = \sqrt{x^2 + y^2} \cos \theta \,\hat{\mathbf{i}} + \sqrt{x^2 + y^2} \sin \theta \,\hat{\mathbf{2}} + z \,\hat{\mathbf{3}}$$
$$\mathbf{c}(\sigma; z) = \sigma \,\hat{\mathbf{i}} + \sqrt{x^2 + y^2 - \sigma^2} \,\hat{\mathbf{2}} + z \,\hat{\mathbf{3}}$$

And specifically,

$$\bar{\mathbf{c}}\left(\arccos(\sigma/\sqrt{x^2+y^2});\sqrt{x^2+y^2}\right) = \mathbf{c}(\sigma;z)$$

Comparing (18) and (20), a position on $\bar{\mathbf{g}}$ coincides with a position on \mathbf{g} whenever

$$\cos \phi r = x\gamma$$
 and $\sin \phi r = y\gamma$,

That is, whenever

$$\phi = \arctan\left(\frac{y}{x}\right)$$

and

$$r = \sqrt{x^2 + y^2} \, \gamma$$

We have thus proved that these two gradient paths correspond:

$$\bar{\mathbf{g}}(r; \arctan(y/x)) = \frac{xr}{\sqrt{x^2 + y^2}} \mathbf{\hat{1}} + \frac{yr}{\sqrt{x^2 + y^2}} \mathbf{\hat{2}} + \frac{1}{h} \left(h^2 - r^2\right) \mathbf{\hat{3}}$$
$$\mathbf{g}(\gamma; x, y) = x\gamma \mathbf{\hat{1}} + y\gamma \mathbf{\hat{2}} + z(x\gamma, y\gamma) \mathbf{\hat{3}}$$

And specifically,

$$\bar{\mathbf{g}}\left(\sqrt{x^2+y^2}\,\gamma;\arctan(y/x)
ight) = \,\mathbf{g}(\gamma;x,y)$$

Natural coordinates. Using (19), (20), and evaluating the derivatives at $\sigma = 0$ and $\gamma = 1$, gives the orthonormal vector basis $\{\hat{\mathbf{c}}, \hat{\mathbf{g}}, \hat{\mathbf{n}}\}$ at position \mathbf{x} on $\mathcal{P}(h)$:

$$\begin{aligned} \hat{\mathbf{c}}(x,y) &= \frac{1}{r} \left(-y\hat{\mathbf{1}} + x\hat{\mathbf{2}} \right) \\ \hat{\mathbf{g}}(x,y) &= \frac{1}{r\sqrt{h^2 + 4r^2}} \left(hx\hat{\mathbf{1}} + hy\hat{\mathbf{2}} - 2r^2\hat{\mathbf{3}} \right) \\ \hat{\mathbf{n}}(x,y) &= \frac{1}{\sqrt{h^2 + 4r^2}} \left(-2x\hat{\mathbf{1}} - 2y\hat{\mathbf{2}} - h\hat{\mathbf{3}} \right) \end{aligned}$$

with $r^2 = x^2 + y^2$. To express **x** under $\{\hat{\mathbf{c}}, \hat{\mathbf{g}}, \hat{\mathbf{n}}\}$, write

$$\begin{aligned} \mathbf{x}(x,y) &= x\mathbf{\hat{1}} + y\mathbf{\hat{2}} + z(x,y)\mathbf{\hat{3}} \\ &= x\mathbf{\hat{1}} + y\mathbf{\hat{2}} + \frac{1}{h}\left(h^2 - x^2 - y^2\right)\mathbf{\hat{3}} \\ &= u(x,y)\mathbf{\hat{c}} + v(x,y)\mathbf{\hat{g}} + w(x,y)\mathbf{\hat{n}} \end{aligned}$$

The resulting system of equations to be solved for u, v and w is

$$-y\sqrt{h^{2} + 4r^{2}} u + hxv - 2xrw = xr\sqrt{h^{2} + 4r^{2}}$$
$$x\sqrt{h^{2} + 4r^{2}} u + hyv - 2yrw = yr\sqrt{h^{2} + 4r^{2}}$$
$$-2rv - hw = \sqrt{h^{2} + 4r^{2}}z$$

This system is linear in u, v and w, and is easily solved, giving

$$\mathbf{x}(x,y) = \frac{1}{\sqrt{h^2 + 4(x^2 + y^2)}} \left(0\hat{\mathbf{c}}(x,y) - \frac{\sqrt{x^2 + y^2}}{h} \left(h^2 - 2(x^2 + y^2) \right) \hat{\mathbf{g}}(x,y) - (h^2 + x^2 + y^2) \hat{\mathbf{n}}(x,y) \right)$$

Path traversal commutivity. On $\mathcal{P}(h)$, using (11) and (19), the length along the z-contour is

$$l(0,\sigma) = \int_0^\sigma \left| \frac{\mathrm{d}\mathbf{c}(\bar{\sigma};z)}{\mathrm{d}\bar{\sigma}} \right| \mathrm{d}\bar{\sigma} = \int_0^\sigma \frac{r}{\sqrt{r^2 - (x - \bar{\sigma})^2}} \mathrm{d}\bar{\sigma} \quad \text{with } r = \sqrt{x^2 + y^2}$$

Although this is a well-known standard integral,^[1] I wish to carry out the integration here. Let $x - \bar{\sigma} = r \arcsin \bar{\psi}$. Then $d\bar{\sigma} = -r \cos \bar{\psi} d\bar{\psi}$, giving

Consider traversing $\mathcal{P}(h)$'s 0-contour path (c.f. (19)) $\mathbf{c}(\sigma; 0) = (h - \sigma)\mathbf{\hat{1}} + \sqrt{h^2 - (h - \sigma)^2}\mathbf{\hat{2}} + 0\mathbf{\hat{3}}$, beginning at $\mathbf{c}(0; 0)$ and ending at $\mathbf{c}(h; 0)$. Then $l(0, h) = h \arcsin((h\sqrt{h^2 - 0} - 0)/h^2) = h \arcsin(1) = \pi h/2$, as expected.

Equation (21) provides length traversed along $\mathbf{c}(\sigma; z)$ as a function of the path parameter σ , starting at the position \mathbf{x} on $\mathcal{P}(h)$. This relationship can easily be inverted, allowing σ to be specified as a function of distance traversed:

$$\sigma(l) = x + y\sin(l/r) - x\cos(l/r) \tag{22}$$

Substitution into (19) offers a natural parametrisation of the z-contour path on $\mathcal{P}(h)$ as

$$\mathbf{c}(l;z) = [x\cos(l/r) - y\sin(l/r)]\,\mathbf{\hat{1}} + [x\sin(l/r) + y\cos(l/r)]\,\mathbf{\hat{2}} + z\mathbf{\hat{3}}$$
(23)

Using (11) and (20), the length along the x-gradient is

$$m(1,\gamma) = \int_1^\gamma \left| \frac{\mathrm{d}\mathbf{g}(\bar{\gamma};x,y)}{\mathrm{d}\bar{\gamma}} \right| \mathrm{d}\bar{\gamma} = \int_1^\gamma r \sqrt{1 + \frac{4r^2\bar{\gamma}^2}{h^2}} \,\mathrm{d}\bar{\gamma} \quad \text{ with } r = \sqrt{x^2 + y^2}$$

Again, although this is a well-known integral,^[1] I choose to carry out the integration here. Applying

the substitutions $\bar{\gamma} = \frac{h}{2r} \tan \bar{\psi}$, $d\bar{\gamma} = \frac{h}{2r} \sec^2 \bar{\psi} d\bar{\psi}$, gives $\frac{2}{h}m(1,\gamma) = \int_{\frac{1}{h}}^{\psi} \sec^3 \bar{\psi} \, \mathrm{d}\bar{\psi} \quad \text{ with } \psi = \arctan\left(\frac{2r\gamma}{h}\right), \ \psi_0 = \arctan\left(\frac{2r}{h}\right)$ $=\int_{-}^{\psi}\sec\bar{\psi}\sec^{2}\bar{\psi}\,\mathrm{d}\bar{\psi}$ $=\int_{\psi_0}^{\psi} \sec \bar{\psi} \, \frac{\mathrm{d}\tan \bar{\psi}}{\mathrm{d}\bar{\psi}} \, \mathrm{d}\bar{\psi}$ $=\sec\bar{\psi}\tan\bar{\psi}\Big|_{\psi_0}^{\psi}-\int_{\psi_0}^{\psi}\frac{\mathrm{d}\sec\bar{\psi}}{\mathrm{d}\bar{\psi}}\tan\bar{\psi}\,\mathrm{d}\bar{\psi}\quad\text{(Using "Integration by parts".)}$ $= \sec \bar{\psi} \tan \bar{\psi} \Big|_{\psi_0}^{\psi} - \int_{\psi_0}^{\psi} \sec \bar{\psi} \tan^2 \bar{\psi} \, \mathrm{d}\bar{\psi}$ $\bar{\psi} = \sec \bar{\psi} \tan \bar{\psi} \Big|_{\psi_0}^{\psi} - \int_{-\pi}^{\psi} \sec \bar{\psi} \left(\sec^2 \bar{\psi} - 1 \right) \, \mathrm{d}\bar{\psi}$ $= \sec \bar{\psi} \tan \bar{\psi} \Big|_{\psi_0}^{\psi} - \frac{2}{h} m(1,\gamma) + \int_{\psi}^{\psi} \sec \bar{\psi} \, \mathrm{d}\bar{\psi}$ $\sqrt{h^2 + 4^{\circ}}$ ψ $\Rightarrow \quad \frac{4}{h} m(1,\gamma) = \sec \bar{\psi} \tan \bar{\psi} \Big|_{\psi_0}^{\psi} + \ln \left(\sec \bar{\psi} + \tan \bar{\psi} \right) \Big|_{\psi_0}^{\psi}$ $= \sec\psi\tan\psi - \sec\psi_0\tan\psi_0 + \ln\left(\frac{\sec\psi + \tan\psi}{\sec\psi_0 + \tan\psi_0}\right)$ $=\frac{2r}{h^2}\left(\gamma\sqrt{h^2+4r^2\gamma^2}-\sqrt{h^2+4r^2}\right)+\ln\left(\frac{2r\gamma+\sqrt{h^2+4r^2\gamma^2}}{2r+\sqrt{h^2+4r^2}}\right)$ $= \left(\frac{2r\gamma}{h}\right)\sqrt{1+\left(\frac{2r\gamma}{h}\right)^2} - \left(\frac{2r}{h}\right)\sqrt{1+\left(\frac{2r}{h}\right)^2} +$ $\ln\left(\left(\frac{2r\gamma}{h}\right) - \sqrt{1 + \left(\frac{2r\gamma}{h}\right)^2}\right) - \ln\left(\left(\frac{2r}{h}\right) - \sqrt{1 + \left(\frac{2r}{h}\right)^2}\right)$ $\Rightarrow \quad m(1,\gamma) = \frac{r}{2h} \left(\gamma \sqrt{h^2 + 4r^2 \gamma^2} - \sqrt{h^2 + 4r^2} \right) + \frac{h}{4} \ln \left(\frac{2r\gamma + \sqrt{h^2 + 4r^2 \gamma^2}}{2r + \sqrt{h^2 + 4r^2}} \right)$

But if we define $\beta(u) = 2 \operatorname{arcsinh}(2\sqrt{x^2 + y^2} u/h)$, and keep in mind these hyperbolic function identities:^[1]

$$\operatorname{arcsinh}(x) = \ln(x + \sqrt{x^2 + 1})$$
$$\operatorname{cosh}^2(x) - \operatorname{sinh}^2(x) = 1$$
$$\operatorname{sinh}(x) \operatorname{cosh}(x) = \frac{1}{2} \operatorname{sinh}(2x)$$
$$\operatorname{sinh}(x) - \operatorname{sinh}(y) = 2 \operatorname{cosh}(\frac{x + y}{2}) \operatorname{sinh}(\frac{x - y}{2})$$

then

$$\begin{split} \frac{4}{h} m(1,\gamma) &= \sinh\left(\frac{\beta(\gamma)}{2}\right) \sqrt{1 + \sinh^2\left(\frac{\beta(\gamma)}{2}\right)} \ - \ \sinh\left(\frac{\beta(1)}{2}\right) \sqrt{1 + \sinh^2\left(\frac{\beta(1)}{2}\right)} \\ &+ \frac{\beta(\gamma) - \beta(1)}{2} \\ &= \sinh\left(\frac{\beta(\gamma)}{2}\right) \cosh\left(\frac{\beta(\gamma)}{2}\right) \ - \ \sinh\left(\frac{\beta(1)}{2}\right) \cosh\left(\frac{\beta(1)}{2}\right) \\ &+ \frac{\beta(\gamma) - \beta(1)}{2} \end{split}$$

so that finally,

$$m(1,\gamma) = \frac{h}{8} \left(\sinh\beta(\gamma) + \beta(\gamma) - \sinh\beta(1) - \beta(1)\right) \quad \text{with } \beta(u) = 2\operatorname{arcsinh}\left(2\sqrt{x^2 + y^2} \, u/h\right)$$

This expression for $m(1, \gamma)$ cannot be inverted analytically, as was done for $l(0, \sigma)$ in (22). So unfortunately, we are unable to obtain an analytical expression for the natural parametrisation of the **x**-gradient path on $\mathcal{P}(h)$, as was done for $\mathcal{L}(h)$ in (17). But observe that $m(1, \gamma)$'s dependence on x and y is only in the form of powers of $r = \sqrt{x^2 + y^2}$. And any point on the z-contour path on $\mathcal{P}(h)$ preserves $\sqrt{x^2 + y^2}$ (Eq. (19)). Therefore, the parametrisations are the same for the path length of all **x**-gradients such that **x** lies on the z-contour path. And so, to analyse path traversal commutivity of the z-contour path and the **x**-gradient for any **x** on $\mathcal{P}(h)$, we may happily use $\mathbf{c}(l; z)$ from (23) together with $\mathbf{g}(\gamma; x, y)$ from (20).

As suggested by (12), and in keeping with the previous paragraph, define the coordinate mappings over $\mathcal{P}(h)$:

$$\begin{aligned} \mathcal{C}(l) &: \mathbf{x} \mapsto \mathcal{C}(l)\mathbf{x} = \mathbf{c}(l;z) \\ \mathcal{G}(\gamma) &: \mathbf{x} \mapsto \mathcal{G}(\gamma)\mathbf{x} = \mathbf{g}(\gamma;x,y) \end{aligned}$$

A traversal of length l over the z-contour path, starting at position **x**, followed by a traversal of length $m(1, \gamma)$ over the $\mathbf{c}(l; z)$ -gradient path is

$$\begin{aligned} \mathcal{G}(\gamma)\mathcal{C}(l)\mathbf{x} &= \mathcal{G}(\gamma)\left[\left(x\cos(l/r) - y\sin(l/r)\right)\mathbf{\hat{1}} + \left(x\sin(l/r) + y\cos(l/r)\right)\mathbf{\hat{2}} + z\mathbf{\hat{3}}\right] \\ &= \left[x\cos(l/r) - y\sin(l/r)\right]\gamma\mathbf{\hat{1}} + \left[x\sin(l/r) + y\cos(l/r)\right]\gamma\mathbf{\hat{2}} + \frac{1}{h}\left[h^2 - r^2\gamma^2\right]\mathbf{\hat{3}}\end{aligned}$$

And a traversal of length $m(1, \gamma)$ over the **x**-gradient path, starting at position **x**, followed by a traversal of length l over the $\mathbf{g}_3(m(1, \gamma); x, y)$ -contour path is

$$\begin{aligned} \mathcal{C}(l)\mathcal{G}(\gamma)\mathbf{x} &= \mathcal{C}(l) \left[x\gamma \mathbf{\hat{1}} + y\gamma \mathbf{\hat{2}} + \frac{1}{h} \left(h^2 - r^2 \gamma^2 \right) \mathbf{\hat{3}} \right] \\ &= \left[x\gamma \cos \left(l/\sqrt{(x\gamma)^2 + (y\gamma)^2} \right) - y\gamma \sin \left(l/\sqrt{(x\gamma)^2 + (y\gamma)^2} \right) \right] \mathbf{\hat{1}} + \left[x\gamma \sin \left(l/\sqrt{(x\gamma)^2 + (y\gamma)^2} \right) + y\gamma \cos \left(l/\sqrt{(x\gamma)^2 + (y\gamma)^2} \right) \right] \mathbf{\hat{2}} + \frac{1}{h} \left[h^2 - (x\gamma) - (y\gamma)^2 \right] \mathbf{\hat{3}} \\ &= \left[x\cos \left(l/r\gamma \right) - y\sin \left(l/r\gamma \right) \right] \gamma \mathbf{\hat{1}} + \left[x\sin \left(l/r\gamma \right) + y\cos \left(l/r\gamma \right) \right] \gamma \mathbf{\hat{2}} + \frac{1}{h} \left[h^2 - r^2 \gamma^2 \right] \mathbf{\hat{3}} \end{aligned}$$

Taking the difference:

$$\begin{aligned} (\mathcal{G}(\gamma)\mathcal{C}(l) - \mathcal{C}(l)\mathcal{G}(\gamma))\mathbf{x} &= \gamma \left[x\cos(l/r) - y\sin(l/r) - x\cos(l/r\gamma) + y\sin(l/r\gamma) \right] \mathbf{\hat{1}} + \\ \gamma \left[x\sin(l/r) + y\cos(l/r) - x\sin(l/r\gamma) - y\cos(l/r\gamma) \right] \mathbf{\hat{2}} \\ &= \gamma \left[x \left[\cos(l/r) - \cos(l/r\gamma) \right] - y \left[\sin(l/r) - \sin(l/r\gamma) \right] \right] \mathbf{\hat{1}} + \\ \gamma \left[x \left[\sin(l/r) - \sin(l/r\gamma) \right] + y \left[\cos(l/r) - \cos(l/r\gamma) \right] \right] \mathbf{\hat{2}} \end{aligned}$$

The trigonometric identities

$$\cos(a) - \cos(b) = 2\sin(\frac{a+b}{2})\sin(\frac{b-a}{2})$$
$$\sin(a) - \sin(b) = 2\cos(\frac{a+b}{2})\sin(\frac{a-b}{2})$$

give, after some algebraic manipulation,

$$\begin{aligned} \left(\mathcal{G}(\gamma)\mathcal{C}(l) - \mathcal{C}(l)\mathcal{G}(\gamma)\right)\mathbf{x} \\ &= 2\gamma\sin\left(\frac{l}{2r}\left(1 - \frac{1}{\gamma}\right)\right)\left\{\left[-x\sin\left(\frac{l}{2r}\left(1 + \frac{1}{\gamma}\right)\right) - y\cos\left(\frac{l}{2r}\left(1 + \frac{1}{\gamma}\right)\right)\right]\mathbf{\hat{i}} \\ &+ \left[x\cos\left(\frac{l}{2r}\left(1 + \frac{1}{\gamma}\right)\right) - y\sin\left(\frac{l}{2r}\left(1 + \frac{1}{\gamma}\right)\right)\right]\mathbf{\hat{2}}\right\} \end{aligned}$$

(24)

Clearly, this path traversal difference vector vanishes only when $\gamma = 1$ or when l = 0. The two path traversal pairs over $\mathcal{P}(h)$ shown in Figure 3 demonstrate the non-vanishing of (24).

Figure 3: On the inverted paraboloid $\mathcal{P}(h)$, contour path and gradient path traversals, as calculated in (24), do not commute. The four paths were calculated using (6), (7), (8) and (9), and drawn computationally. Refer to the appendix in Section 9 for details on the computations.

8 Acknowledgments

As always Mels, thanks for being such a close friend and supportive partner, and for showing an interest in this work.

9 Appendix—Computed drawing with IAT_EX , TikZ, pkTikZ and PKREALVECTOR

In this section I demonstrate the combined use of IAT_EX , TikZ, my pkTikZ IAT_EX package^[?], and my C object class called PKREALVECTOR^[2] to produce the three-dimensional schematic diagrams included in this document.

Perhaps not suprisingly, the text in the document was typeset with IATEX. The figures were typeset with TikZ. TikZ is software capability for typesetting graphical content directly in IATEX. The specification and calculation of the three-dimensional landscapes in the figures were done in the C programming language with the help of my PKREALVECTOR object class. PKREALVECTOR provides a useful coding abstraction for instantiating and manipulating vectors in \mathbb{R}^n . For example, PKREALVECTOR's API² includes calls to perform the rotational coordinate transformations needed to render on paper a two-dimensional projection of a three-dimensional landscape.

To typeset a figure, the IAT_EX source file for this document $input{}$'s another external IAT_EX source file. In the case of Figure 2, the file was named paraboloidfigure.tex. The file contains the TikZ source code instructions to typeset the figure. The file was generated dynamically as the output of the execution of the paraboloidfigure.run program, which in turn was created by compiling the C code located in the paraboloidfigure.c file. Actually, by virtue of the presence of the Makefile file for the UNIX Make system, as listed below, I simply needed to type make to create the final PDF-formatted document file, a copy of which you are currently reading.

To incorporate TikZ's capabilities during type setting, I included the following lines of LATEX code in the preamble of my LATEX ".tex" file:

\usepackage{pktikz}
\usetikzlibrary{calc}
\usetikzlibrary{positioning}
\usetikzlibrary{intersections}

 ${\rm Ti}k{\rm Z}$ was customised "globally" for all figures in the document using the following lines of LATEX code:

```
1
2
    \newcommand*\ud{\text d}
    \newcommand*\deriv[2]{\frac{\ud #1}{\ud #2}}
3
    \newcommand*\derivB[2]{\ud #1/\ud #2}
4
    \newcommand*\parDeriv[2]{\frac{\partial #1}{\partial #2}}
5
     \newcommand*\evalAt[2]{\left.#1\right|_{#2}}%
6
     \newcommand*\evalFromTo[3]{\left.#1\right|_{#2}^{#3}}%
7
8
9
     \newcommand*\abs[1]{\protect\left|#1\protect\right|}
10
     \newcommand*\one{\pktikzBasisVector{1}}
11
     \newcommand*\two{\pktikzBasisVector{2}}
12
     \newcommand*\three{\pktikzBasisVector{3}}
13
14
     \newcommand*\vecx{\pktikzVector{x}}
15
     \newcommand*\vecc{\pktikzVector{c}}
16
    \newcommand*\vecg{\pktikzVector{g}}
17
    \newcommand*\vecG{\pktikzVector{G}}
18
19
    \newcommand*\vect{\pktikzVector{t}}
    \newcommand*\surface{\mathcal{S}}
20
    \newcommand*\plane{\mathcal{L}(h)}
21
22
    \mbox{newcommand}{\parab}{\mbox{mathcal}P}(h)
```

²Application Programming Interface

```
\newcommand*\chat{\pktikzUnitVector{c}}
23
   \newcommand*\ghat{\pktikzUnitVector{g}}
24
   \newcommand*\nhat{\pktikzUnitVector{n}}
25
   \newcommand*\contmap{\mathcal{C}}
26
   \newcommand*\gradmap{\mathcal{G}}
27
   28
   \newcommand*\vecdS{\ud\pktikzVector{S}}
29
30
   \mbox{newcommand}\mbox{myrsqr}{x^2+y^2}
31
32
   \newcommand*\myr{\sqrt{\myrsqr}}
33
34
   %------
35
   % For TikZ begins.
36
   %
   %\tikzset{
37
   %}
38
39
   %
   % For TikZ ends.
40
   %_-----
41
```

The file paraboloidfigure.tex contains TikZ code for Figure 2. It resembles:

```
\begin{PkTikzpicture}[scale=1.0]
   %
   % Some coordinates.
   %
   \coordinate (origin) at (0,0);
   %
   % Basisvectors.
   %
   \draw[pktikzbasisvector,<->]
      (-4.00405,-2.86636) node[below left] {$\one$} --
      (origin) -- (6.91956,-1.34503) node[right] {$\two$};
   %
   % The paraboloid.
   %
   \draw[parabsurface]
      (-3.55594,1.01518) --
      (-3.19215,1.07405) --
      . . .
      (-3.55594, 1.01518);
   \path (1.53038,5.65063) node[above right,edgecolor]{$\parab$};
   \draw[surface]
      (-0.90268,6.05877) --
      (-0.538888,6.11765) --
      . . .
      (4.38155,2.12884);
   %
   % 'z'-contour path 'c'.
   %
   \draw[emphvectorcolor] plot[smooth] coordinates {
      (3.58346, 2.51076)
      (3.46522, 2.4308)
```

. . .

```
(-2.27789,1.69415) };
\path (-0.976833,1.5442) node[below,emphvectorcolor]{$\vecc(\sigma;z)$};
.
.
.
```

```
\end{PkTikzpicture}
```

The paraboloidfigure.tex file was incorporated into the body of the text with an \input{} LATEX command, as follows:

```
\begin{figure}[h!]
   \begin{center}
        \input{paraboloidfigure.tex}
        \end{center}
        \caption{...}
        \label{paraboloid}
\end{figure}
```

The content of the paraboloidfigure.c C source file, which was used to create the TikZ code in paraboloidfigure.tex, has been primed to be typeset using the PKTECHDOC "literate programming" LATEX package.^[3] PKTECHDOC makes it possible to closely juxtapose LATEX code and non-LATEX code both for typesetting and for compilation outside of LATEX.

```
1
    #include <pkfeatures.h>
2
3
    #include <stddef.h>
    #include <stdlib.h>
4
    #include <stdio.h>
5
   #include <unistd.h>
6
7 #include <stdarg.h>
  #include <string.h>
8
   #include <math.h>
9
   #include <float.h>
10
11
12
   #include <pkmemdebug.h>
   #include <pkerror.h>
13
    #include <pktypes.h>
14
    #include <pkstring.h>
15
    #include <pkmath.h>
16
    #include <pkrealvector.h>
17
18
19
    #include "globals.h"
20
    /*-----*/
21
22
23
    const char *LOGFNAME = "/tmp/diagram.log";
24
    /*-----*/
25
26
27
    static void _printVector( const PKREALVECTOR *v )
28
    ſ
      printf( "Vector %s = ( ", pkRealVectorGetName(v) );
29
      pkRealVectorPrintf( v, "__COMPONENTVALUE__", ", " );
30
      puts(" )");
31
32
      return;
    }
33
```

The _paraboloid() private function below simply returns the value z(x, y) of the constitutive equation (3) for the inverted paraboloid $\mathcal{P}(h)$. The paraHeight global variable is defined in the globals.h C header file.

```
34 static PKMATHREAL _paraboloid( const PKMATHREAL x, const PKMATHREAL y )
35 {
36     const PKMATHREAL h = paraHeight;
37     return( 1.0 / h * ( h*h - x*x - y*y ) );
38 }
```

The _diagram() private function below specifies the diagram's three-dimensional landscape. It does this primarily using the PKREALVECTOR object class. The function prints to standard output a body of TikZ source code which may be used to typeset the landscape in IAT_{FX} .

But before this function can do so, it must transform the landscape in such a way that what TikZ typesets is a two-dimensional projection of the three-dimensional landscape. The function rotationally transforms the landscape onto the space spanned by the $\{\hat{1}', \hat{2}', \hat{3}'\}$ orthonormal vector basis set, where the $\hat{1}'$ and $\hat{2}'$ basis vectors lie in the plane of the page and $\hat{3}'$ is perpendicular to the page, i.e., lying parallel to the reader's line of sight.

In the function, the xLos, yLos and zLos are required for the rotational transformations. They are the three coordinates of the "line-of-sight" vector under the $\{\hat{1}, \hat{2}, \hat{3}\}$ vector basis. The angle θ is the tilt angle between $\hat{2}$ and the $\hat{2}'\hat{3}'$ plane. The actual transformation is affected via calls resembling

For further details, refer to $^{[2]}$ and $^{[4]}$.

```
static void _diagram(void)
39
40
     {
        const int Nx = 15,
41
                   Ny = Nx,
42
                   Nc = 20,
43
                   Ng = 10;
44
45
        PKMATHREAL xMin,
46
                    xMax.
                    yMin,
47
                    yMax;
48
        PKMATHREAL p, q;
49
        PKREALVECTOR *e1,
50
                      *e2,
51
52
                      *e3,
                               /* Apex of the paraboloid. */
53
                      *t,
                              /* Position on the paraboloid. */
54
                      *x.
                               /* Component vector of 'x' along 1. */
55
                      *x1.
                      *x2,
                              /* Component vector of 'x' along 2. */
56
                              /* Component vector of 'x' along 3. */
57
                      *x3,
                              /* Component vector of 'x' in the 1-2 plane. */
                      *x12.
58
                      *r[Nx+1][Ny+1], /* An array of positions on the paraboloid. */
59
                      *c[Nc+1],
                                       /* An array of positions on the contour path */
60
                                       /* passing thru 'x'. */
61
                      *g[Ng+1];
                                       /* An array of positions on the gradient path */
62
                                       /* passing thru 'x'. */
63
64
           int i,
65
                j;
```

Here we specify the three-dimensional landscape. Begin with the $\{\hat{1}, \hat{2}, \hat{3}\}$ vector basis.

```
e1 = pkRealVectorAlloc1( "\\one",
                                            3, basisVecLen, 0.0, 0.0 );
66
        e2 = pkRealVectorAlloc1( "\\two",
                                             3, 0.0, basisVecLen, 0.0 );
67
        e3 = pkRealVectorAlloc1( "\\three", 3, 0.0, 0.0, basisVecLen );
68
69
        /*
70
71
         * The apex position.
72
         */
        t = pkRealVectorAlloc1( "\\vect", 3, 0.0, 0.0, _paraboloid(0.0,0.0) );
73
```

The array **r** represents an $N_x \times N_y$ matrix of positions vectors on $\mathcal{P}(h)$.

```
{
74
75
           xMin = - 0.2 * paraHalfWidth;
           xMax = 0.8 * paraHalfWidth;
76
           yMin = - 0.2 * paraHalfWidth;
77
           yMax = 0.8 * paraHalfWidth;
78
79
           for ( i = 0; i < Nx; i++ ) {</pre>
              p = xMin + (double)i / (double)Nx * ( xMax - xMin );
80
              for ( j = 0; j < Ny; j++ ) {
81
                 q = yMin + (double)j / (double)Ny * ( yMax - yMin );
82
                 r[i][j] = pkRealVectorAlloc1( "", 3, p, q, _paraboloid(p,q) );
83
              }
84
           }
85
       }
86
```

The position vector \mathbf{x} represent any point of interest on $\mathcal{P}(h)$.

```
87  p = 0.3 * paraHeight;
88  q = 0.6 * paraHeight;
89  x = pkRealVectorAlloc1( "\\vecx", 3, p, q, _paraboloid(p,q) );
90  x12 = pkRealVectorAlloc1( "x12", 3, p, q, 0.0 );
91  x1 = pkRealVectorAlloc1( "x", 3, p, 0.0, 0.0 );
92  x2 = pkRealVectorAlloc1( "y", 3, 0.0, q, 0.0 );
93  x3 = pkRealVectorAlloc1( "z(x,y)", 3, 0.0, 0.0, _paraboloid(p,q) );
```

Specification of N_c sample positions on the z-contour path $\mathbf{c}(\sigma; z)$.

```
{
94
95
            const PKMATHREAL x0 = pkRealVectorGetComponent(x)[0],
                              y0 = pkRealVectorGetComponent(x)[1],
96
                              z0 = _paraboloid(x0,y0),
97
            //xMin = - sqrt( x0 * x0 + y0 * y0 ) + FLT_EPSILON;
98
            xMin = 0.0;
99
            xMax = sqrt( x0 * x0 + y0 * y0 ) - FLT_EPSILON;
100
            for ( i = 0; i < Nc; i++ ) {</pre>
101
               char *name = strAllocPrintf( "\\vecc_%d", i );
102
               p = xMin + (double)i / (double)(Nc - 1) * (xMax - xMin);
103
               q = sqrt( y0 * y0 + x0 * x0 - p * p );
104
               c[i] = pkRealVectorAlloc1( name, 3, p, q, z0 );
105
               strFreePrintf(name);
106
            }
107
        }
108
```

Specification of N_g sample positions on the **x**-contour path $\mathbf{g}(\gamma; x, y)$.

109 {
110 const PKMATHREAL x0 = pkRealVectorGetComponent(x)[0],
111 y0 = pkRealVectorGetComponent(x)[1];

```
xMin = pkRealVectorGetComponent(x)[0] + 0.05 * paraHalfWidth;
112
            xMax = pkRealVectorGetComponent(t)[0];
113
           for ( i = 0; i < Ng; i++ ) {
114
               char *name = strAllocPrintf( "\\vecg_%d", i );
115
               p = xMin + (double)i / (double)(Ng - 1) * (xMax - xMin);
116
               q = y0 / x0 * p;
117
               g[i] = pkRealVectorAlloc1( name,
118
119
                                           З,
120
                                           p,
121
                                           q,
                                           _paraboloid(p,q) );
122
               strFreePrintf(name);
123
            }
124
        }
125
```

Rotationally transform the landscape onto the space spanned by the abovementioned "line-of-site" basis. That is, transform all vectors into "shadow" vectors which lie in the $\hat{1}'\hat{2}'$ plane lying flat on the page.

```
for ( i = 0; i < Nx; i++ ) {</pre>
126
            for ( j = 0; j < Ny; j++ ) {
127
               pkRealVectorUnderLineOfSightBasis1( r[i][j],
128
                                                     xLos, yLos, zLos, theta );
129
            }
130
        }
131
        pkRealVectorsUnderLineOfSightBasisV1( xLos, yLos, zLos, theta,
132
                                                 c, Nc );
133
        pkRealVectorsUnderLineOfSightBasisV1( xLos, yLos, zLos, theta,
134
                                                 g, Ng );
135
         if ( 0 == pkRealVectorsUnderLineOfSightBasis1( xLos, yLos, zLos, theta,
136
137
                                                           e1, e2, e3,
138
                                                           t,
                                                           x, x1, x2, x3, x12,
139
140
                                                           NULL ) ) {
```

Prepare the TikZ commands for typesetting the projection of the three-dimensional landscape of $\mathcal{P}(h)$.

141	puts("\\begin{PkTikzpicture}[scale=1.0,");
142	puts(<pre>" mypoint/.style={pktikzpoint,fill=black},");</pre>
143	puts(<pre>" %paraboloid/.style={pktikzsurface,shading=axis,");</pre>
144	puts(" % shading angle=170,opacity=0.5}]");
145	puts(<pre>" paraboloid/.style={draw=pktikzsurfacedrawcolor,top color=w</pre>
146	puts(<pre>bottom color=pktikzsurfacefillcolor,")</pre>
147	puts(" opacity=0.5}]");
148	puts(" %");
149	puts(" %//draw[help lines] (-0.2,-0.2) grid (7.1,5.1);");
150	puts(" %");
151	puts(<pre>" % Some coordinates.");</pre>
152	puts(" %");
153	puts(<pre>" \\pktikzSetUncircledPoint{(0,0)}{origin};");</pre>
154	printf(<pre>" \\pktikzSetUncircledPoint{(%g,%g)}{t};\n",</pre>
155		<pre>pkRealVectorGetComponent(t)[0], pkRealVectorGetComponent(t)[1]);</pre>
156	printf(<pre>" \\pktikzSetUncircledPoint{(%g,%g)}{x};\n",</pre>
157		<pre>pkRealVectorGetComponent(x)[0], pkRealVectorGetComponent(x)[1]);</pre>
158	puts(" %");
159	puts(<pre>" % Basisvectors.");</pre>
160	puts(" %");
161	printf(<pre>" \\draw[pktikzbasisvector,<->]\n"</pre>
162		" (%g,%g) node[below left] {\$%s\$}\n"

163		" (origin) (%g,%g) node[right] {\$%s\$};\n",
164		<pre>pkRealVectorGetComponent(e1)[0],</pre>
165		<pre>pkRealVectorGetComponent(e1)[1],</pre>
166		<pre>pkRealVectorGetName(e1),</pre>
167		<pre>pkRealVectorGetComponent(e2)[0],</pre>
168		<pre>pkRealVectorGetComponent(e2)[1],</pre>
169		<pre>pkRealVectorGetName(e2));</pre>
170	printf(" \\draw[pktikzbasisvector,->]\n"
171	-	" (origin) (%g,%g) node[above] {\$%s\$};\n",
172		pkRealVectorGetComponent(e3)[0],
173		pkRealVectorGetComponent(e3)[1],
174		pkRealVectorGetName(e3));
175		1
176	puts(" %"):
177	puts(" % The components of the 'x' position."):
178	puts(" %"):
179	printf(<pre>" \\draw[pktikzdimension_semithick]\n"</pre>
180	P1101(" (origin)\n"
181		$(\sqrt{\sigma} \sqrt{\sigma})\sqrt{n}$
182		$(\sqrt{a}, \sqrt{a}) - \sqrt{n}$
182		$(\sqrt{g}, \sqrt{g}) $ $\sqrt{\mu}$ " $(\sqrt{g}, \sqrt{g}) $ node[left]{\$ \sqrt{g} }
100		(\g,\g) node [left] (\g,\g) in
104		
180		$(^{0}g, ^{0}g) = (^{1})$
186		" (\langle grade and a contract (12) [0]
187		pkRealVectorGetComponent(x12)[0],
188		pkRealVectorGetComponent(x12)[1],
189		pkRealVectorGetComponent(x)[0],
190		pkRealVectorGetComponent(x)[1],
191		pkRealVectorGetComponent(x3)[0],
192		pkRealVectorGetComponent(x3)[1],
193		pkRealVectorGetName(x3),
194		pkRealVectorGetComponent(x1)[0],
195		<pre>pkRealVectorGetComponent(x1)[1],</pre>
196		<pre>pkRealVectorGetName(x1),</pre>
197		<pre>pkRealVectorGetComponent(x12)[0],</pre>
198		<pre>pkRealVectorGetComponent(x12)[1],</pre>
199		<pre>pkRealVectorGetComponent(x2)[0],</pre>
200		<pre>pkRealVectorGetComponent(x2)[1],</pre>
201		<pre>pkRealVectorGetName(x2));</pre>
202		
203	puts("%");
204	puts(" % The paraboloid.");
205	puts("%");
206	//puts(<pre>" \\draw[pktikztranslucentsurface]");</pre>
207	//puts(<pre>" \\draw[pktikzsurface]");</pre>
208	puts("	<pre>\\draw[paraboloid]");</pre>
209	for (j	= 0; j < Ny; j++) {
210	print	$tf("(\%g,\%g)\n",$
211	-	pkRealVectorGetComponent(r[Nx-1][j])[0],
212		pkRealVectorGetComponent(r[Nx-1][j])[1]);
213	}	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
214	for (i	$= Nx - 1; i \ge 0; i \}$
215	print	$f(" (\%g,\%g) - \n".$
216	P- 111	pkRealVectorGetComponent(r[i][Nv-1])[0]
217		pkRealVectorGetComponent(r[i][Ny-1])[1]).
218	}	particular contraction ponent (r [r] [My 1]/[r]),
210	for (i	$= Nv - 1 \cdot i \ge 0 \cdot i - i \le 0$
210	(J	
220 221	PT TI	$\frac{1}{100} \frac{1}{100} \frac{1}$
221		phical vector GetComponent(r[0][j])[0],
222	l	<pre>pknearvectorGetComponent(I[0][]])[I]);</pre>
223	5 f	
224	tot (1	$-0; 1 \le NX - 1; 1++) ($

```
(\g,\g) --\n'',
225
               printf( "
226
                        pkRealVectorGetComponent(r[i][0])[0],
227
                        pkRealVectorGetComponent(r[i][0])[1] );
            }
228
            printf( "
                            (%g,%g);\n",
229
                    pkRealVectorGetComponent(r[Nx-1][0])[0],
230
231
                    pkRealVectorGetComponent(r[Nx-1][0])[1] );
                         \\path (%g,%g) node[above right,pktikzsurfacedrawcolor]{$\\parab$};\n",
232
            printf( "
233
                        pkRealVectorGetComponent(r[0][3*Ny/7])[0],
                        pkRealVectorGetComponent(r[0][3*Ny/7])[1] );
234
                     "
                        %");
235
            puts(
236
            for ( i = 1; i < Nx - 1; i++ ) {
237
               puts( " \\draw[pktikzsurfacelines]" );
238
               for (j = 0;
                             j < Ny; j++ ) {
239
                                   (%g,%g)%s\n",
240
                  printf( "
                           pkRealVectorGetComponent(r[i][j])[0],
241
                           pkRealVectorGetComponent(r[i][j])[1],
242
                           ( j < Ny - 1 ) ? " --" : ";" );
243
244
               }
            }
245
            puts( "
                      %");
246
            for ( j = 1;  j < Ny - 1;  j++ ) {
247
               puts( "
                         \\draw[pktikzsurfacelines]" );
248
               for ( i = 0;  i < Nx;  i++ ) {</pre>
249
                  printf( "
250
                                   (%g,%g)%s\n",
251
                           pkRealVectorGetComponent(r[i][j])[0],
252
                           pkRealVectorGetComponent(r[i][j])[1],
                           ( i < Nx - 1 ) ? " --" : ";" );
253
254
               }
            }
255
256
                         %");
                     11
257
            puts(
                     ...
258
            puts(
                         % Apex position 't'.");
                     ...
259
            puts(
                         %");
            printf( "
                         \\draw[pktikzbasisvector,->]\n"
260
261
                            (t) -- (%g,%g);\n",
262
                    pkRealVectorGetComponent(e3)[0],
                    pkRealVectorGetComponent(e3)[1] );
263
            printf( "
                         \\path (t) coordinate[mypoint,label=left:$%s$];\n",
264
                    pkRealVectorGetName(t) );
265
            puts(
                     п
                         %");
266
                     ...
                         % 'z'-contour path 'c'.");
267
            puts(
                     11
                         %");
            puts(
268
                     п
269
            puts(
                         \\draw[pktikzemphvectorcolor] plot[smooth] coordinates {" );
270
            for (i = 0;
                          i < Nc; i++ ) {
271
               printf( "
                               (%g,%g)%s\n",
272
                        pkRealVectorGetComponent(c[i])[0],
                        pkRealVectorGetComponent(c[i])[1],
273
                        (i < Nc - 1) ? "" : " };" );
274
275
            }
            printf( "
                         \\path (%g,%g) node[below,pktikzemphvectorcolor]{$\\vecc(\\sigma;z)$};\n",
276
277
                        pkRealVectorGetComponent(c[Nc-2])[0],
278
                        pkRealVectorGetComponent(c[Nc-2])[1] );
                     п
            puts(
                         %");
279
                     п
                         % 'x'-gradient path 'g'.");
            puts(
280
                         %");
281
            puts(
                     п
                         \\draw[pktikzemphvectorcolor] plot[smooth] coordinates {" );
282
            puts(
283
            for (i = 0;
                          i < Ng; i++ ) {
               printf( "
                               (%g,%g)%s\n",
284
285
                        pkRealVectorGetComponent(g[i])[0],
286
                        pkRealVectorGetComponent(g[i])[1],
```

```
(i < Ng -1)?"":"};");
287
            }
288
           printf( "
                        \\path (%g,%g) node[right=1ex,pktikzemphvectorcolor]{$\\vecg(\\gamma;x,y)$};`
289
                       pkRealVectorGetComponent(g[4])[0],
290
                       pkRealVectorGetComponent(g[4])[1] );
291
292
                    п
                        %");
293
            puts(
                    п
            puts(
                        % Position vector 'x'.");
294
                    п
                        %");
295
            puts(
           printf( "
                        \\path (x) coordinate[mypoint,label=below right:$%s$];\n",
296
                    pkRealVectorGetName(x) );
297
            puts(
                    "\\end{PkTikzpicture}");
298
299
        } else {
300
301
            puts("ERROR: 'pkRealVectorsUnderLineOfSightBasis1()' failed.");
302
303
        }
304
```

Finally, clean up.

```
305
        pkRealVectorFree1(e1);
306
        pkRealVectorFree1(e2);
307
        pkRealVectorFree1(e3);
        pkRealVectorFree1(t);
308
        for ( i = 0;  i < Nx;  i++ ) {</pre>
309
310
           for ( j = 0; j < Ny; j++ ) {
              pkRealVectorFree1(r[i][j]);
311
           }
312
        }
313
314
        pkRealVectorFree1(x);
315
        pkRealVectorFree1(x1);
        pkRealVectorFree1(x2);
316
        pkRealVectorFree1(x3);
317
318
        pkRealVectorFree1(x12);
        for ( i = 0; i < Nc; i++ )</pre>
319
           pkRealVectorFree1(c[i]);
320
        for ( i = 0; i < Ng; i++ )
321
322
           pkRealVectorFree1(g[i]);
323
324
        return;
     }
325
326
     /*-----*/
327
328
329
     int main( const int argc, const char *argv[] )
330
     ſ
331
        _diagram();
        exit(0);
332
     }
333
```

This simple UNIX "makefile" captures the necessary file dependencies, and demonstrates how to compile the C files.

Generic Make targets.

1 all: embedded-surfaces-in-R3.pdf

 $\mathbf{2}$

```
3 clobber: latexclobber
```

File based Make targets.

```
10 embedded-surfaces-in-R3.pdf: paraboloid.tex Makefile.demo embedded-surfaces-in-R3.bib
```

Implicit rule targets.

```
.SUFFIXES: .c .o .run .tex
11
     .c.o:
12
              clang -c -DDEBUG=2 -I/usr/local/pklib/include -DFreeBSD -o ${@} ${<}</pre>
13
14
     .o.run:
              clang -DDEBUG=2 -I/usr/local/pklib/include -DFreeBSD -o ${@} ${<} \</pre>
15
                    /usr/local/pklib/lib/libpk.a \
16
17
                    /usr/local/pklib/lib/libpkmath.a \
18
                    -lm
19
     .run.tex:
20
              ./${<} > ${@}
```

Incorporate PKIATEXMAKE.^[5]

21 # Added by 'pklatexmake.mk'. Do not delete. 26Jul16 22 .include "/usr/local/pklatexmake/lib/pklatexmake.mk"

References

- Murray R. Spiegel. Schaum's Outline Series—Mathematical Handbook of Formulas and Tables. Number 07-060224-7. McGraw–Hill, 1968.
- [2] Paul Kotschy. The PKLIB C software library.
- [3] Paul Kotschy. PKTECHDOC: Literate programming for non-T_EX programmers. Still to be published.
- [4] Paul Kotschy. Rotational transformations in three dimensions. Still to be published.
- [5] Paul Kotschy. The PKIATEXMAKE package. Still to be published.