
Tracking Investment Performance Amidst Sporadic
and Uncorrelated Buy/Sell Transactions

Paul Kotschy
9 December 2025

Compiled on December 12, 2025

I(t)

t
t0

I1+0

I1−n

I1+n

I1−n+1

t10 t11 t12 t1n t1n+1

I2+0

I2−p

I2+p

I2−p+1

t20 t2p t2p+1

Abstract

A
n important task1 of an investment portfolio manager is to report on the performance of not only
a portfolio as a whole, but also of its constituent investment instruments. For a portfolio comprised

of a single instrument into which a single lump sum cash injection is made, reporting on performance
is trivially easy. But life is seldom easy. Usually, multiple disparate instruments make up an investment
portfolio, and cash injections and ejections are a mix of ad hoc lump sum and regular deposits and with-
drawals. Under such a regime of sporadic and uncorrelated buy/sell transactions, reporting on perfor-
mance is indeed not trivial.

Herein, then, I introduce two numerical measures of performance. The measures are specially taylored
to account for such real-world investing regimes. The first measure, dubbed the effective long growth rate,
accommodates cash injections and ejections on a set of investments of arbitrary size and at arbitrary
times. The effective long growth rate is formulated as a composite of exponential growth rates. It is
an inherently nonlinear measure, weighted by transaction size and by the lapsed time between adjacent
transactions. The second measure, dubbed the spot proportional change, accounts for the deleterious
effect of transaction costs on an investment’s performance.

These two new performance measures have been incorporated in the author’s pkInvest portfolio
management software.

1I declare this to be my own work, entirely. In particular, no AI was used in any research, analysis, synthesis, writing, nor typeset-
ting of this work. In short, AI was not recruited at any time in this work. Errors and inaccuracies are therefore proudly my own.

Contents

1 Introduction 3

2 Analysis 4

2.1 Time-discontinuous regime for a single investment . 4

2.1.1 Transaction costs . 5

2.2 Effective long growth rate . 6

2.2.1 Dividends . 7

2.2.2 Numerical scheme . 8

2.3 Spot proportional change . 10

2.4 Time-discontinuous regime for an investment portfolio . 11

3 Implementation 13

3.1 The Model component . 13

3.1.1 The create.sql file . 13

3.1.2 The demo.sql file . 14

3.2 The View component . 15

3.2.1 The index.html-tmpl file . 15

3.2.2 The pkinvest.css file . 15

3.2.3 The login.css file . 22

3.2.4 The portfolio2.m4-tmpl file . 23

3.3 The Controller component . 25

3.3.1 The m7config.h file . 25

4 Acknowledgments 27

2

1 Introduction

T
he needs of a prudent private investor are similar to those of an institutional investor. Broadly, a
prudent private investor seeks both to maximise return and to minimise risk of loss on his or her suite

of investments over time. To satisfy these two objectives, the private investor must:

1. Analyse the quality of actual and prospective investment instruments.

The focus of the analysis must not be on past performances, but on forecasted future ones. Also, the
instruments’ contribution to the overall make-up of the portfolio must be considered.

2. Construct a portfolio.

The portfolio must stand the best chance of exploiting economic and business fluctuations. The port-
folio must be appropriately diversified. That is, not only must the response of the portfolio’s member
instruments to such fluctuations be uncorrelated, but there must also be sufficient redundancy be-
tween the instruments. The redundancy helps reduce the impact of failure of any one.

3. Account for the costs associated with each investment.

It is known that for collective investment schemes, such as mutual funds, the expensiveness of a
scheme is a good predictor of its performance.[1]

4. Maintain records.

Records must be kept of buy/sell transactions, dividend and interest receipts, investment values, and
so on. These records are needed to characterise the evolution of the individual investments, the in-
vestment groups, and the portfolio as a whole.

Using the author’s pkInvest software platform, a portfolio is constructed as a set of investment groups. In
turn, each group is a set of investments. And to each investment is associated a sequence of transactions.
This hierarchy is shown schematically as follows:

Portfolio 1
Investment Group 1

Investment 1
Transaction 1
Transaction 2
...

Investment 2
...

Investment Group 2
...

Portfolio 2
...

The contributions from each transaction to an investment, and from an investment to its group, and from a
group to its portfolio, are all accounted for.

The first new performance measure introduced here is dubbed the effective long growth rate. It is computed for
each investment, for each investment group, and for each portfolio. It accommodates the time-discontinuous
evolution of a real investment portfolio. That is, it accommodates an investor making cash injections into
the set of investments of arbitrary size and at arbitrary times. The effective long growth rate is formulated
as a composite of exponential growth rates. It is an inherently non-linear measure, weighted by transaction
size and by the time lapse between adjacent transactions.

3

The second new performance measure introduced here is dubbed the spot proportional change. It is introduced
to account for the deleterious effect of investment transaction costs on the spot growth performance of an
investment.

In the ensuing Section 2, a detailed mathematical analysis of a typical real investment regime is given, with
particular emphasis on the development of investment performance measures. Section 3 addresses aspects
of the software design and implementation of pkInvest. The two new performance measure have been
incorporated into pkInvest.

2 Analysis

I
nvestment transactions conducted by private investors are typically lump sum cash injections of arbi-
trary size, made at arbitrary times, and into a variety of investments. Unfortunately, not only does this

ad hoc and uncorrelated behaviour obscure the intrinsic growth of the individual investments, but it also
hampers an effective comparison between the investments.

Therefore, to help expose intrinsic growth and to foster such comparisons, a mathematical analysis must
from the outset account for the presence of this ad hoc and uncorrelated behaviour. To begin, we appeal to
the following definitions:

Ln — Lump sum cash injection into an investment at time tn.

I — Total value of the investment I at time t.

I−n — Total value of the investment I at time tn, but just before the lump sum cash injection Ln. That is
I−n = I(t−n).

I+n — Total value of the investment I at time tn, but just a�er the lump sum cash injection Ln. That is
I+n = I(t+n).

q — Number of units of investment I held by the investor.

i — Investment value per unit of investment at time t. That is i(t) = I(t)/q(t).

c — Cost of conducting an investment transaction, measured as a fraction of the absolute difference
|I+n − I−n |, and assumed to be a constant fraction. Note that cash injections and cash ejections both
incur a positive transaction cost. And c being strictly positive reflects this.

Dn — Value of a dividend received over the [tn, tn+1) time interval and pertaining to investment I .

k — Effective long growth rate for investment I calculated at time t.

gn — Spot proportional change for the [tn−1, tn] time interval.

P — Total value of the investment portfolio at time t.

K — Effective long growth rate for the investment portfolio as a whole, calculated at time t.

2.1 Time-discontinuous regime for a single investment

A typical evolution of a single investment I is shown schematically in Figure 1. A transaction on the in-
vestment is simply either a lump sum cash injection into the investment or a cash ejection from it. Each
transaction results in jump discontinuity in the evolution at the time of the transaction.

The equation for the time-continuous evolution of investment I over the [tn, tn+1) time interval is

I(t) = I+n e
∫ t
tn

κ(t) dt for t ∈ [tn, tn+1), n = 0, 1, 2, . . .

and I+0 ≡ I0
(1)

4

I(t)

t

I+0
I−1

I+1

I−2

I+2

I−n

I+n

I−n+1

t0 t1 t2 tn tn+1

Figure 1: A typical single investment regime showing its ad hoc and time-discontinuous
character. As indicated, cash injections and ejections are of arbitrary size and are made at
arbitrary times.

where κ(t)—not to be confused with k(t)—is the instantaneous time rate of relative change in I at time t.
Equation (1) is easily derived, as follows. The infinitesimal change in the value of the investment at any time t
is

dI(t) = I(t)κ(t) dt

so that
dI(t)

dt
= κ(t)I(t)

This is a simple linear homogenous differential equation. By dividing both sides by I(t) and integrating, the
solution (1) is obtained.

Equation (1) suggests that a reasonable definition for a time-continuous growth rate which is constant over
the [tn, tn+1) interval is

kn = ⟨κ(t)⟩|tn+1

tn =
1

tn+1 − tn

∫ tn+1

tn

κ(t) dt

Obviously, kn is the time-average of κ(t) over the [tn, tn+1) interval. The time-continuous investment evo-
lution equation (1) may then be approximated as

I(t) ≈ I+n ekn(t−tn) for t ∈ [tn, tn+1), n = 0, 1, 2, . . .

and I+0 ≡ I0
(2)

2.1.1 Transaction costs

Since a lump sum cash injection into an investment, or a cash ejection from it, introduces a jump disconti-
nuity in the time evolution of the investment’s value, it is easy to state the governing equation for the n-th
transaction at time tn as

I+n = I−n + Ln − c
∣∣I+n − I−n

∣∣
It is also easy to prove from this governing equation that

I+n = I−n + Ln − sgn(L)c(I+n − I−n)

from which we obtain

I+n = I−n +
L

1 + sgn(L)c
(3)

5

Equations (2) and (3) allow the influence of the set of lump sum cash injections {Ln |n = 0, 1, 2, . . . } to
be quantified. If only a single lump sum injection is made at time t0, say, then an effective long growth rate
constant k could be specified by (2) with k identified with k0. However, whereas (2) pertains to the time
evolution of I+0 , the investor initially “sacrificed” an amountL0 = (1+c)I0, which amount is greater than I+0 .
And although the transaction fractional cost c might be small relative to I+0 , it may not be small relative to k.
Therefore, (2) and (3) suggest that a better effective long growth rate constant could be specified implicitly
by

I(t) = L0e
k(t−t0) for t ∈ [t0, t1) (4)

so that

k = k(t) =
1

t− t0
ln

(
I(t)

L0

)
for t ∈ [t0, t1)

Finally, as a matter of record keeping, investment transactions usually involve the exchange of a number of
units of the investment instrument, with each unit having an agreed value. That is, I(t) = q(t)i(t), so that

k(t) =
1

t− t0
ln

(
q(t)i(t)

L0

)
for t ∈ [t0, t1) (5)

2.2 Effective long growth rate

A naïve interpretation of (5) is that an investment instrument’s real growth over time is exponential. But
that interpretation is incorrect. Equity investments, for example, are subject to “external forces”, and these
forces may have political, macroeconomic or psychological origins. Rather, the purpose of (4) and (5) is: 1. to
provide a long-term investor with a sensible average growth rate constant for investment I ; 2. to enable the
investor to track the evolution of the rate constant; and 3. to place comparisons between independent
investments on a firmer quantitative footing.

Equation (5) applies only to a single transaction at time t0. We must extend the analysis to obtain an effective
long growth rate constant applicable in an investment regime involving multiple transactions of arbitrary size
and conducted at arbitrary times, as shown in Figure 1 on page 5.

Applying (2) to the [t1, t2) time interval gives

I(t) = I+1 ek1(t−t1) for t ∈ [t1, t2)

=

(
I−1 +

L1

1 + sgn(L1)c

)
ek1(t−t1) from (3)

=

(
I+0 ek0(t1−t0) +

L1

1 + sgn(L1)c

)
ek1(t−t1)

=

(
L0

1 + sgn(L0)c
ek0(t1−t0) +

L1

1 + sgn(L1)c

)
ek1(t−t1)

=
L0

1 + sgn(L0)c
ek0(t1−t0)+k1(t−t1) +

L1

1 + sgn(L1)c
ek1(t−t1)

This suggests that for the [t1, t2) interval, a choice for an effective long growth rate constant could be defined
implicitly by the equation

I(t) =
L0

1 + sgn(L0)c
ek(t−t0) +

L1

1 + sgn(L1)c
ek(t−t1) for t ∈ [t1, t2)

However, as argued earlier, k here is a post-transaction cost measure. Specifically, L0/(1 + sgn(L0)c) < L0

and L1/(1 + sgn(L1)c) < L1, and L0 and L1 are the actual cash flows made by the investor. Therefore,
following (4), a better long growth rate constant which accounts for the effect of transaction costs could
be defined by

I(t) = L0e
k(t−t0) + L1e

k(t−t1) for t ∈ [t1, t2)

6

I(t)

t

I−i

I+i

Li

1 + sgn(Li)c

Li

Li −Di

ti

Figure 2: Schematical representation of the magnitude of the lump sum Li, the effect of the
receipt of the dividend Di, and the actual jump in the investment value as a result of the
transaction at time ti.

And once again, as a matter or record keeping, since I(t) = q(t)i(t), k(t) is defined implicitly by

L0e
k(t)(t−t0) + L1e

k(t)(t−t1) = q(t)i(t) for t ∈ [t1, t2) (6)

Since L0 and L1 would have been recorded at the transaction times t0 and t1, (6) may be solved for k(t)
whenever t1 ⩽ t < t2.

The analysis for the [t2, t3) time interval and for subsequent time intervals follows analogously. And so, for
any [tn, tn+1) interval, we may implicitly define a pre-transaction-cost long growth rate constant k(t) by

n∑
i=0

Lie
k(t)(t−ti) = q(t)i(t) for t ∈ [tn, tn+1), n = 0, 1, 2, . . . (7)

2.2.1 Dividends

As a holder of a portion of a company’s outstanding shares, an investor is entitled to receive dividends
from the company. A dividend is paid by the company into the investor’s banking account or share trading
account. If it may be assumed that the dividends receivable over the [ti, ti+1) interval are in fact all received
at the time of the i-th transaction, then the net effect is to reduce the investor’s required cash for the i-th
transaction, as shown in Figure 2 above. By reducing the investor’s required cash for the i-th transaction,
the effect of receipt of a dividend is to increase the investment’s effective long growth rate, k(t).

In the absence of receipt of any dividends, the solution to (7) for k(t) is sufficient. But because the dividend
effectively discounts the investor’s lump sum, (7) must be modified to give

n∑
i=0

(Li −Di)e
k(t)(t−ti) = q(t)i(t) for t ∈ [tn, tn+1), n = 0, 1, 2, . . . (8)

Unfortunately, (8) cannot be solved analytically, and a simple closed-form expression for the effective long
growth rate cannot therefore be obtained. We are obliged to appeal to a numerical approximation for k(t).

7

2.2.2 Numerical scheme

Let N be the number of buy/sell transactions. Then the set of transaction times is {t0, t1, . . . , tN−1}, and
we wish typically to obtain a value for k(t) for some t ⩾ tN−1.

A simple “predictor–corrector” scheme is suggested by (8), using

k(t) =
1

t− tm
ln

(
q(t)i(t)−

∑N−1
i=0,i̸=m(Li −Di)e

k(t)(t−ti)

Lm −Dm

)
for some m and t ⩾ tN−1 (9)

But (9) is not well posed for the special case of m = N − 1 and t = tN−1. So we must look elsewhere.

An alternative numerical scheme which will work in that special case is the well-known Bisection Method.[2]

The method will always converge to a solution, albeit “slowly”.

Rewrite equation (8) as

F (k(t)) =
N−1∑
i=0

(Li −Di)e
k(t)(t−ti) − q(t)i(t) = 0 for t ⩾ tN−1, N = 1, 2, . . . (10)

Then the solution to k(t) is a root of F .

The Bisection Method requires that an interval be supplied which is known to contain a desired solution. The
interval is specified with a lower bounding value and an upper bounding value. We seek an initial approxi-
mation to k(t) which can be used as one of these bounding values.

First bounding value. Suppose that instead of seeking a long growth constant over the full [t0, t] interval,
we assign each interval its own long growth constant. Then from (2)

q(t−i+1)i(t
−
i+1) = q(t+i)i(ti+1) = q(t+i)i(ti)e

ki(ti+1−ti)

since the number of investment units are constant over each [ti, ti+1) interval. So

ki =
1

ti+1 − ti
ln

(
i(ti+1)

i(ti)

)
(11)

We are able to easily compute the set {ki}. Can we therefore specify a suitable initial approximation to k(t)
using {ki}? For t ∈ [t0, t1)

q(t)i(t) = q+0 i0e
k0(t−t0) =

L0 −D0

1 + c
ek0(t−t0) (using (2.1.1))

And for t ∈ [t1, t2)

q(t)i(t) = q+1 i1e
k1(t−t1) = (q−1 +∆q1)i1e

k1(t−t1)

= (q+0 i1 +∆q1i1)e
k1(t−t1)

= (q+0 i0e
k0(t1−t0) +∆q1i1)e

k1(t−t1)

=
1

1 + c

(
(L0 −D0)e

k0(t1−t0) + (L1 −D1)
)
ek1(t−t1)

And so on. Therefore, for any N = 1, 2, . . .

q(t)i(t) =
1

1 + c

N−1∑
i=0

(Li −Di)e
∑N−2

j=i kj(tj+1−tj)ekN−1(t−tN−1) for t ∈ [tN−1, tN) (12)

Comparison of (12) with (8) suggests that a suitable initial approximation to k(t) is given by

ek(t)(t−t0) =
1

1 + c
e
∑N−2

j=0 kj(tj+1−tj)+kN−1(t−tN−1)

8

from which

k(t) =
1

t− t0
ln

(
1

1 + c
e
∑N−2

j=0 kj(tj+1−tj)+kN−1(t−tN−1)

)
This approximation can be simplified by appealing to the definition of the {ki} in (11). Consider the summa-
tion in the exponential:

N−2∑
j=0

kj(tj+1 − tj) + kN−1(t− tN−1) =
N−2∑
j=0

ln(
ij+1

ij
) +

t− tN−1

tN − tN−1
ln(

iN
iN−1

) (13)

But

N−2∑
j=0

ln(
ij+1

ij
) =

N−2∑
j=0

(ln ij+1 − ln ij)

= ln iN−1 +
N−3∑
j=0

ln ij+1 − ln i0 −
N−2∑
j=1

ln ij

= ln iN−1 − ln i0 +
N−3∑
j=0

ln ij+1 −
N−3∑
j=0

ln ij+1

= ln(
iN−1

i0
)

The summation simplifies to

N−2∑
j=0

kj(tj+1 − tj) + kN−1(t− tN−1) = ln(
iN−1

i0
) +

t− tN−1

tN − tN−1
ln(

iN
iN−1

)

And the initial approximation to k(t) then is

k(t) =
1

t− t0
ln

 1

1 + c

(
iN−1

i0

)(
iN
iN−1

) t−tN−1
tN−tN−1

 for t ∈ [tN−1, tN), N = 1, 2, . . . (14)

Application of (14) assumes the existence of the [tN−1, tN) time interval for which i(tN) is known. But if it
is not known, then we are inclined to consider i(tN) for tN vanishingly close to t+. And since

lim
tN→t+

(
t− tN−1

tN − tN−1

)
= 1 for t > tN−1

we have

k(t) =
1

t− t0
ln

(
1

1 + c
· i(t)
i0

)
On the other hand, if we are interested in k(tN−1), then set t = tN−1 in (14) to give

k(tN) =
1

tN−1 − t0
ln

(
1

1 + c
· i(tN−1)

i0

)
But because these two expressions have the same functional form, we are free to drop recourse to i(tN),
and set as an initial approximation to k(t)

k(t) =
1

t− t0
ln

(
1

1 + c
· i(t)
i0

)
for all t ⩾ t0 (15)

9

Second bounding value. A second bounding value is obtained by making increasingly large “jumps” away
from the first bounding value, as follows:

k′ ⇐ k(t) using (15). k′ is the first bounding value.
l ⇐ 0
k′′ ⇐ k′ − (−α)d for some α > 1 and d > 0.
while F (k′)F (k′′) > 0 do
l ++
k′′ ⇐ k′ − (−α)ld

k′′ is now a second bounding value.
Set k′ and k′′ such that k′′ > k′.

Inspection of the algorithm suggests that an improvement in efficiency may be obtained by removing the “(−α)l ”
exponent computation. Let k′′l be the l-th iterative attempt at finding a second bounding value k′′. Then

k′′l = k′ − (−α)ld and k′′l−1 = k′ − (−α)l−1d

So

k′′l = k′ − (−α)(−α)l−1d

= k′ − (−α)[k′ − k′′l−1]

= (1 + α)k′ − αk′′l−1, for l = 1, 2, 3, . . . , with k′′0 = k′ − d

Therefore the revised algorithm is as listed in Algorithm 1.

Algorithm 1 Compute a [k′, k′′] bounding interval for the Bisection Method.

k′ ⇐ k(t) using (15). k′ is the first bounding value.
k′′ ⇐ k′ − d for some d > 0.
while F (k′)F (k′′) > 0 do
k′′ ⇐ (1 + α)k′ − αk′′ for some α > 1.

k′′ is now a second bounding value.
Set k′ and k′′ such that k′′ > k′.

Of course, the actual implementation of Algorithm 1 must account for the possibilities ofF (k′) = 0,F (k′′) = 0,
and of never finding a k′′.

Bisection Method. With a [k′, k′′] bounding interval now known, the essential elements of the Bisection
Method are listed in Algorithm 2.

Algorithm 2 Essential elements of the Bisection Method.

Compute k′ and k′′ using Algorithm 1.
while |k′′ − k′| > ϵ for some small ϵ do
k ⇐ 1

2(k
′ + k′′)

if F (k′)F (k) < 0 then
k′′ ⇐ k

else
k′ ⇐ k

2.3 Spot proportional change

Whereas the effective long growth rate (§2.2) is defined over a time interval spanning multiple buy/sell trans-
actions, the spot proportional change defined in this section concerns changes between two adjacent trans-
actions, and involves only one (possibly nil) lump sum cash injection and one (possibly nil) dividend receipt.

10

I(t)

t

Ln−1

1 + sgn(Ln−1)c

Ln

1 + sgn(Ln)c

Ln−1

Dn

tn−1

I−n−1

I+n−1

tn

I−n

I+n

Figure 3: Idealisation of an investment’s price history over the [tn−1, tn) time interval. The
endpoints of the green line are used to define the spot proportional change for the [tn−1, tn]
time interval.

The deleterious effect of transaction costs on the spot growth performance of an investment are often
overlooked. I surmise this is because, firstly, the transaction costs are usually small relative to the overall
size of a transaction. And secondly, it is not in the interests of the financial management community to
disclose these costs. The notion of an spot proportional change formulated here accounts not only for the
effect of these transactional costs, but also for the benefit of the receipt of dividends.

An idealisation of an investment’s price history over the [tn−1, tn] time interval is shown in Figure 3. Although
the investment’s actual value follows the trajectory shown in blue, the spot proportional change, gn, for the
[tn−1, tn] time interval is identified as the relative difference between the endpoints of the green line. The
defining equation is

gn ≡
(I−n +Dn)− (I−n−1 + Ln−1)

I−n−1 + Ln−1
for [tn−1, tn] (16)

Why define the spot proportional change in this way? At time tn−1, the investor makes an actual lump sum
cash injection of Ln−1. So to ensure that the investment growth over the [tn−1, tn] interval not be artificially
inflated by this lump sum, we must begin with (I−n−1 + Ln−1) and not simply In−1. Next, at the end of the
interval, the investor receives a dividend Dn. Provided it is reinvested, it will serve to increase the value of
the investment, and so should be factored into a measure of spot growth.

We wish to express gn in terms of quantities which are recorded for each buy/sell transaction. By definition

I−n = q(t−n)i(t
−
n) = q(t+n−1)i(tn) ≡ qn−1in

And defining
∆qn = q(t+n)− q(t−n) = q(t+n)− q(t+n−1) = qn − qn−1

it is easy to show that

gn =
(qn −∆qn)in − (qn −∆qn −∆qn−1)in−1 +Dn − Ln−1

(qn −∆qn −∆qn−1)in−1 + Ln−1
for n = 1, 2, 3, . . . (17)

2.4 Time-discontinuous regime for an investment portfolio

The numerical schemes listed in Algorithms 1 and 2 are for a single investment into which lump sum injections
are made. However, in reality, a private investor must manage multiple investments. The analysis must
therefore be extended to account for this.

11

I(t)

t
t0

I1+0

I1−n

I1+n

I1−n+1

t10 t11 t12 t1n t1n+1

I2+0

I2−p

I2+p

I2−p+1

t20 t2p t2p+1

Figure 4: A typical portfolio comprising two investments I1 and I2.

Suppose an investor’s portfolio consisted of only two investments. A typical set of transactions for the two
investments is shown schematically in Figure 4.

Even for a simple portfolio consisting of no more than two investments, the calculation of an aggregate
growth rate for the portfolio as a whole is not trivial. Indeed, as depicted in Figure 4, two investments in the
portfolio need not even share an initial investment time.

The simple question “How is my portfolio performing?” belies the difficulty it presents in providing a sensible
answer. To provide an answer, we must extend the analysis of the growth of a single investment to that of
the portfolio as a whole.

Suppose that the investor’s portfolio consists of M independent investments, with the m-th investment
having the set {tm0 , tm1 , . . . , tmNm−1} of Nm transaction times. Then, applying (8) to the m-th investment,
we may write

Nm−1∑
i=0

(Lm
i −Dm

i)ek
m(t)(t−tmi) = qm(t)im(t) for m = 1, 2, . . . ,M

and t ⩾ max
{
tmNm−1 |m = 1, 2, . . . ,M

} (18)

and where Lm
i is a lump sum cash injection into the m-th investment at time tmi , Dm

i is the (possibly nil)
dividend extracted from the m-th investment at tmi .

The value of the investor’s portfolio at time t is obviously

P (t) =

M∑
m=1

qm(t)im(t) (19)

Scrutiny of (18) and (19), together with (10), suggests that a pre-transaction-cost effective long growth
rate, K(t), for the portfolio as a whole may be computed as the root of the equation

F (K(t)) =
M∑

m=1

Nm−1∑
i=0

(Lm
i −Dm

i)eK(t)(t−tmi) − P (t) = 0

for t ⩾ max
{
tmNm−1 |m = 1, 2, . . . ,M

}
(20)

The Bisection Method described in Section 2.2.2 may then be used to compute K(t).

12

3 Implementation

T
he effective long growth rate and the spot proportional change were introduced in Section 2 as two new
numerical measures of the performance of an investment portfolio. Both measures have been been

incorporated in the author’s pkInvest portfolio management software.

pkInvest is an online application. This means that it is constructed as a Web-based software application. Its
software design architecture adheres to the well-known Model-View-Controller (MVC) design pattern.[3] The
“Model” component is the data stored in an SQLite3 SQL database. The “View” component is a set of M4-
formatted files which get transformed “on-the-fly” into a set of HTML files, and which in turn are rendered in
a user’s Web browser. The “Controller” is a set of C source code files which compile to create the pkinvest
binary. The binary controls the integration of the data with the M4 files during their transformation into
HTML.

My M7 programming framework plays a central role in facilitating this transformation. The framework con-
sists of a set of predefined M4 macros and an application programming interface. The macros reside in the
/usr/local/m7/defs/html/stdlib2.m4 filepath. In the context of Web programming, the macros pro-
vide the Web developer with a layer of abstraction over HTML, allowing Web content to be prepared with
M4-formatted files rather than with HTML-formatted files.2 The abstraction helps the developer maintain
uniformity and consistency in the derived HTML. This is because the expansion of a macro, via an implicit
invocation of the m4 macro-processor, remains the same whenever and wherever the macro is called.

The directory structure of the code base has been organised, in part, to reflect adherence to the abovemen-
tioned MVC design pattern. For example, the src/ directory contains the “.h” and “.c” C source code files;
and the m4/ directory contains a set of “.m4-tmpl” files which are compiled into the abovementioned “.m4”
M4 files prior to the installation of pkInvest.

In this section, the application of the MVC design pattern in the implemention of pkInvest is presented
on a file by file basis. The ensuing documentation in this section was prepared with the help of the my LATEX-
based pkTechDoc[4] documentation system. Using pkTechDoc, it was possible to annotate the source code
elements directly in their respective source files, but to have the annotations be typeset in this document
using LATEX.

3.1 The Model component

3.1.1 The create.sql file

The database schema for pkInvest is intentionally simple. It constists of the Portfolio SQL table, the
InvestmentGroup table, the Investment table, and the Transactn table.

Conceptually, a portfolio comprises a set of investment groups, such as asset classes. An investment group
comprises a set of investments, such as a set of individual equities. And an investment comprises a set of
transactions, such as the purchase of additional shares in an equity, the extraction of a dividend, or the
preparation of a time snapshot of the value of an investment.

Therefore, as is reflected in some of the integer fields, changing Portfolio affects InvestmentGroup,
changingInvestmentGroup affectsInvestment, and changingInvestmentInvestment affectsTransactn.
For example, an entry cannot be deleted from the Portfolio table if at least one entry in InvestmentGroup
refers to it. And an entry cannot be deleted from the Investment table if at least one entry in Transactn
refers to it.

1 CREATE TABLE Portfolio (
2 id integer not null primary key,
3 name text
4);
5 CREATE TABLE InvestmentGroup (

2M4 is a macro language processor. The m4 binary utility program is found on all UNIX compute systems.

13

6 id integer not null primary key,
7 portfolio integer not null,
8 name text
9);

10 CREATE TABLE Investment (
11 id integer not null primary key,
12 investmentGroup integer not null,
13 name text,
14 code text
15);
16 CREATE TABLE Transactn (
17 id integer not null primary key,
18 investment integer not null,
19 epochMins biginteger not null,
20 buySell float not null,
21 quantity integer non null,
22 unitSpotValue float not null,
23 dividend float not null,
24 note text
25);

3.1.2 The demo.sql file

This file contains a set of SQL INSERT instructions used to populate the demo.db SQLite3 database.

1 INSERT INTO "Portfolio" VALUES(1,’Live’);
2 INSERT INTO "Portfolio" VALUES(2,’Expired’);
3 INSERT INTO "Portfolio" VALUES(3,’Experimental’);
4
5 INSERT INTO "InvestmentGroup" VALUES(1,1,’Individual Equity’);
6 INSERT INTO "InvestmentGroup" VALUES(2,1,’Local Collective Equity’);
7 INSERT INTO "InvestmentGroup" VALUES(3,1,’Listed Property’);
8 INSERT INTO "InvestmentGroup" VALUES(4,1,’Offshore’);
9 INSERT INTO "InvestmentGroup" VALUES(5,1,’Bond’);

10 INSERT INTO "InvestmentGroup" VALUES(6,1,’Cash’);
11 INSERT INTO "InvestmentGroup" VALUES(7,2,’Expired’);
12
13 INSERT INTO "Investment" VALUES(1,1,’Aveng’,’AEG’);
14 INSERT INTO "Investment" VALUES(2,1,’BHP Billiton’,’BIL’);
15 INSERT INTO "Investment" VALUES(3,1,’Kumba Iron Ore’,’KIO’);
16 INSERT INTO "Investment" VALUES(4,1,’Santam’,’SNT’);
17 INSERT INTO "Investment" VALUES(5,2,’Satrix Divi ETF’,’STXDIV’);
18 INSERT INTO "Investment" VALUES(6,2,’Brantam: Shiraz’,’’);
19 INSERT INTO "Investment" VALUES(7,6,’Current account’,’’);
20 INSERT INTO "Investment" VALUES(8,6,’Coronation Money Market’,’CMMF’);
21 INSERT INTO "Investment" VALUES(9,6,’Imara share trading account’,’’);
22 INSERT INTO "Investment" VALUES(10,1,’Lewis’,’LEW’);
23 INSERT INTO "Investment" VALUES(11,3,’Capital’,’CPL’);
24 INSERT INTO "Investment" VALUES(12,3,’Redefine’,’RDF’);
25 INSERT INTO "Investment" VALUES(13,3,’Proptrax ETF’,’PTXSPY’);
26 INSERT INTO "Investment" VALUES(14,4,’DBX World ETF’,’DBXWD’);
27 INSERT INTO "Investment" VALUES(15,6,’Cadiz Money Market’,’AFMM’);
28
29 INSERT INTO "Transactn" VALUES(1,15,21563880,101.0,100,1.0,0.0,’’);
30 INSERT INTO "Transactn" VALUES(2,15,21824520,101.0,100,1.0,0.0,’’);
31 INSERT INTO "Transactn" VALUES(3,7,22041960,10.0,10,1.0,0.0,’’);
32 INSERT INTO "Transactn" VALUES(4,9,21825960,202.0,200,1.0,0.0,’’);
33 INSERT INTO "Transactn" VALUES(5,9,21872040,-101.0,-100,1.0,0.0,’’);
34 INSERT INTO "Transactn" VALUES(6,1,21346440,103.0,10,10.0,0.0,’Getting some construction exposure.’);
35 INSERT INTO "Transactn" VALUES(7,1,21913800,0.0,0,11.0,0.0,’Snapshot.’);

14

36 INSERT INTO "Transactn" VALUES(8,2,21883560,45.0,200,0.222,0.0,’Billiton is trading at an attractive valuation currently.’);
37 INSERT INTO "Transactn" VALUES(9,2,21902280,299.0,1300,0.22834,0.0,’’);
38 INSERT INTO "Transactn" VALUES(10,2,21991560,0.0,0,0.24604,0.0,’Snapshot.’);

3.2 The View component

3.2.1 The index.html-tmpl file

As a user’s entry point into the pkInvest application this file performs a simple HTML-based HTTP redirect in
order that the pkinvest binary be executed.

1 <html>
2 <head>
3 <title>p k I n v e s t</title>
4 <meta http-equiv=Refresh content=0;
5 URL=https://__WEBSITENAME__/pkinvest-bin/pkinvest?req=dologin>
6 </head>
7 <!--
8 <body>
9 In __WEBSITENAME__/html/index.html

10 </body>
11 --!>
12 </html>

3.2.2 The pkinvest.css file

Various aspects of the visual appearance and layout of the pkInvest’s user-interface are controlled using
Cascading Style Sheets (CSS).3

1. Styling of basic HTML elements.

1 /*
2 * Try #d6d6c2 for gold
3 */
4 body {
5 /*background-color: #369;*/
6 background-color: gray;
7 /*color: #c22;*/
8 /*color: #144;*/

3Learning about CSS, I found the following websites useful, in order:

• http://www.w3.org/TR/REC-CSS1#classification-properties

• http://www.csszengarden.com/?cssfile=/163/163.css&page=0

• http://www.w3.org/Style/Examples/007/

• http://www.westciv.com/style_master/academy/css_tutorial/

• http://www.maujor.com/indexen.php

• http://html.tucows.com/

• http://css.maxdesign.com.au/listamatic/

• http://threeplusone.com/borders/

• http://www.alistapart.com/articles/practicalcss/—Contains information on the use of DIVs with FORMs with
DIVs.

• http://www.mozilla.org/support/—Contains information on cosmetics aspects, such as buttons, and an input form
field with rounded DIVs.

15

9 color: black;
10 font-family: sans-serif;
11 margin: 0;
12 border: 0;
13 }
14 a,a:link,a:visited {
15 /*color: #c22;*/
16 /*color: #144;*/
17 color: black;
18 text-decoration: none;
19 }
20 a:hover {
21 /*color: #c22;*/
22 background-color: #bbb;
23 /*font-style: italic;*/
24 }
25 /*
26 * ’a:active’ and ’a.focus’ are commented out.
27 */
28 /*a:active {*/
29 /* color: #fff;*/
30 /* background-color: #888;*/
31 /*}*/
32 /*a.focus {*/
33 /* color: #fff;*/
34 /* background-color: #888;*/
35 /*}*/
36 table {
37 /*width: auto;*/
38 width: 100%;
39 margin: 0;
40 padding: 0;
41 border: 0;
42 empty-cells: inherit;
43 border-collapse: collapse;
44 }
45 tr {
46 vertical-align: top;
47 }
48 /*table tr td {*/
49 /* border: 1px solid yellow;*/
50 /*}*/
51 /*p {*/
52 /* padding: 5px;*/
53 /*}*/
54 select {
55 font-size: 0.95em;
56 /*color: #c22;*/
57 /*color: #144;*/
58 color: black;
59 background-color: #ddd;
60 border: 1px solid gray;
61 }
62 input,textarea {
63 font-size: 0.95em;
64 /*color: #c22;*/
65 /*color: #144;*/
66 color: black;
67 background-color: #eee;
68 padding: 1px 1px;
69 border-top: 1px solid silver;
70 border-left: 1px solid silver;

16

71 border-right: 1px solid gray;
72 border-bottom: 1px solid gray;
73 }

2. Class definitions for colours.

74 .blue {
75 color: #68b;
76 }
77 .dodgerblue {
78 color: dodgerblue4;
79 }
80 .peach {
81 color: #ffa;
82 }
83 .darkviolet {
84 color: darkviolet;
85 }
86 .red {
87 color: #c22;
88 }
89 .copper {
90 /*color: #e62;*/
91 color: #e92;
92 }
93 .brass {
94 color: #b5a642;
95 }
96 .bronze {
97 color: #a67d3d;
98 }
99 .steelblue {

100 /*color: #236b8e;*/
101 color: #26d;
102 }
103 .gold {
104 /*color: #acae74;*/
105 /*color: #a49e65;*/
106 color: #948a5c;
107 }
108 .newgold {
109 color: #cd7f32;
110 }
111 .lightgold {
112 /*color: #e4dec4;*/
113 color: #d4ceb4;
114 }
115 .silver {
116 color: silver;
117 }

3. General purpose style class definitions.

118 .small {
119 font-size: 0.85em;
120 }
121 .big {
122 font-size: 1.2em;
123 }
124 .huge {
125 font-size: 1.5em;

17

126 }
127 .bold {
128 font-weight: bold;
129 }
130 .emph {
131 font-style: italic;
132 }
133 .standout {
134 color: red;
135 font-size: 1.05em;
136 }
137 .message {
138 color: red;
139 /*font-style: italic;*/
140 /*font-size: 1.05em;*/
141 }
142 .textlabel {
143 text-align: left;
144 font-size: 0.85em;
145 font-style: italic;
146 /*white-space: nowrap;*/
147 /*padding-right: 0.5ex;*/
148 }
149
150 .textalignleft {
151 text-align: left;
152 }
153 .textalignright {
154 text-align: right;
155 }
156 .textaligncenter {
157 text-align: center;
158 }
159
160 .formsubmit {
161 /*color: #c22;*/
162 /*color: #144;*/
163 color: black;
164 background-color: #e4dec4;
165 padding: 0px 3px;
166 border-top: 1px solid silver;
167 border-left: 1px solid silver;
168 border-right: 1px solid gray;
169 border-bottom: 1px solid gray;
170 }
171 .formsubmit:hover {
172 /*background-color: #bbb;*/
173 background-color: #aaa;
174 }

4. Context-aware style class definitions.

175 .portfolioname {
176 /*font-weight: bold;*/
177 color: #e92;v /* copper */
178 //color: #cd7f32; /* newgold */
179 }
180
181 .investmentgroupname {
182 /*font-weight: bold;*/
183 /* steelblue */

18

184 /*color: #236b8e;*/
185 /*color: #26d;*/
186 color: #c22; /* red */
187 }
188
189 .investmentname {
190 /*font-weight: bold;*/
191 /*color: darkviolet;*/
192 color: green;
193 }
194
195 .transactionname {
196 /*font-weight: bold;*/
197 color: #13f; /* Blue */
198 }
199
200 .logoname {
201 font-size: 1.3em;
202 /*font-weight: bold;*/
203 /*font-style: italic;*/
204 text-decoration: none;
205 }
206 a:hover span.logoname {
207 color: #d4ceb4;
208 background-color: #eee;
209 }
210
211 ul.nakedul {
212 list-style: none;
213 display: inline;
214 padding: 0;
215 margin: 0;
216 /*height: 10%;*/
217 }
218 ul.nakedul li {
219 display: inline;
220 padding: 0;
221 margin: 0;
222 }
223
224 table.pkinvestpage {
225 /* Fiddling begins. PJ Kotschy. 8Sep11. */
226 /*margin: auto;*/
227 /*width: 50%;*/
228 /*width: 90ex;*/
229 /*border: 2px solid #666;*/
230 /* Fiddling ends. */
231 border: 0;
232 }
233
234 table tr.bannerbar {
235 background-color: #eee; /*#333;*/
236 vertical-align: bottom;
237 }
238 table tr.bannerbar td {
239 /*border-bottom: 1px solid silver;*/
240 border-bottom: 1px solid gray;
241 }
242
243 table tr.modulebar td {
244 background-color: #d4ceb4;
245 font-size: 1.2em;

19

246 /*text-align: center;*/
247 text-align: left;
248 border-bottom: 1px solid #aaa;
249 padding: 3px 2px;
250 }
251 /*table tr.modulebar td ul li {*/
252 /* padding-right: 2px;*/
253 /* padding-left: 2px;*/
254 /*}*/
255 table tr.modulebar td ul li:before {
256 content: "|";
257 }
258 table tr.modulebar td ul li:first-child:before {
259 content: "";
260 }
261
262 table tr.actionbar {
263 background-color: silver;
264 border-top: 1px solid #aaa;
265 border-bottom: 1px solid gray;
266 }
267 /*table tr.actionlist {*/
268 /* background-color: #ddd;*/
269 /*}*/
270
271 table tr td.workspace {
272 /*background-color: black;*/
273 background-color: #333;
274 color: #d4ceb4;
275 padding: 0.5ex;
276 }
277
278 table tr td.alignleft {
279 text-align: left;
280 /*padding-left: 0.4ex;*/
281 /*padding-right: 0.4ex;*/
282 }
283 table tr td.alignright {
284 text-align: right;
285 /*padding-left: 0.4ex;*/
286 /*padding-right: 0.4ex;*/
287 }
288 table tr td.aligncenter {
289 text-align: center;
290 }
291
292 table.daysofmonth {
293 width: auto;
294 }
295 table.daysofmonth tr td {
296 padding: 0.7ex;
297 }
298
299 /*a span.editme {*/
300 /* text-decoration: underline;*/
301 /*}*/
302
303
304 table.portfoliotable {
305 width: 100%;
306
307 /*background-color: #eee;*/

20

308 /*background-color: #ddd;*/
309
310 /*border-top: 2px solid #eee;*/
311 /*border-left: 2px solid #eee;*/
312
313 /*border-top: 2px solid gray;*/
314 /*border-left: 1px solid gray;*/
315
316 /*border-bottom: 2px solid gray;*/
317 /*border-right: 1px solid gray;*/
318
319 empty-cells: show;
320 margin: auto;
321 }
322 table.portfoliotable tr td {
323 /*border-width: 1px;*/
324 /*border-left-style: solid;*/
325 /*border-right-style: solid;*/
326 /*border-top-style: none;*/
327 /*border-bottom-style: solid;*/
328 /*padding: 1px;*/
329 padding-left: 0.5ex;
330 padding-right: 0.5ex;
331 }
332 table.portfoliotable tr td a:hover {
333 /*color: #c22;*/
334 /*color: black;*/
335 /*color: #d4ceb4;*/
336 /*color: #cd7f32;*/
337 color: #a67d3d; /* bronze */
338 background-color: #aaa;
339 }
340
341 /*table.portfoliotable tr.headerfooter td {*/
342 /* border-color: #aaa;*/
343 /* border-left-style: solid;*/
344 /* border-right-style: solid;*/
345 /* border-top-style: none;*/
346 /* border-bottom-style: none;*/
347 /*}*/
348 /*table.portfoliotable tr.headerfooter td a {*/
349 /* color: #ddd;*/
350 /*}*/
351 /*table.portfoliotable tr.headerfooter td a:hover {*/
352 /* color: #c22;*/
353 /* background-color: #ddd;*/
354 /*}*/
355 /*table.portfoliotable tr.headermiddle {*/
356 /**/ /*color: #eee;*/
357 /* background-color: #9bf;*/
358 /*}*/
359
360 /*
361 * This class combo is for some reason not being
362 * triggered. PJ Kotschy. 3Nov11.
363 */
364 table.portfoliotable tr.portfolioheader td {
365 /*border-top: 30px solid green;*/
366 /*border-bottom: 1px solid gray;*/
367 /*border-bottom: 3px solid #e92;*/
368 border-bottom: 3px solid #cd7f32; /* This one! */
369 color: #d4ceb4;

21

370 /*padding-top: 1.8ex;*/
371 padding-top: 2.0ex;
372 padding-left: 1.5ex;
373 }
374 table.portfoliotable tr.portfoliofooter td {
375 border-top: 3px solid #cd7f32;
376 color: #d4ceb4;
377 }
378 table.portfoliotable tr.investmentgroup td {
379 background-color: #bbb;
380 border-bottom: 1px solid #999;
381 /*font-weight: bold;*/
382 padding-top: 0.3ex;
383 padding-bottom: 0.3ex;
384 }
385 table.portfoliotable tr.investmentheader td {
386 font-style: italic;
387 font-size: 0.85em;
388 background-color: #d4ceb4;
389 border-bottom: 1px solid gray;
390 padding-top: 0.4ex;
391 padding-bottom: 0.4ex;
392 vertical-align: bottom;
393 }
394 table.portfoliotable tr.investment td {
395 background-color: #ddd;
396 border-bottom: 1px solid #aaa;
397 }
398 table.portfoliotable tr.transaction td {
399 background-color: #eee;
400 border-bottom: 1px solid #bbb;
401 }

3.2.3 The login.css file

The visual appearance and layout of pkInvest’s login HTML screen are controlled via this file.

1 table.loginoutertable {
2 /*border: 2px solid #ddd;*/
3 border-top: 2px solid silver;
4 border-left: 2px solid silver;
5 border-bottom: 2px solid black;
6 border-right: 2px solid black;
7 width: auto;
8 }
9 table.logintable {

10 /*width: 40%;*/
11 width: auto;
12 /*background-color: #eee;*/
13 /*background-color: silver;*/
14 background-color: #d4ceb4;
15 empty-cells: show;
16 margin: auto;
17 border: 5px solid #333;
18 }
19 table.logintable tr td {
20 /*padding-right: 5px;*/
21 /*padding-left: 5px;*/
22 border: 1px solid #aaa;
23 padding: 3px;
24 }

22

3.2.4 The portfolio2.m4-tmpl file

This file is one in a set of M4-formatted files. The file expands to the HTML needed to render pkInvest’s
“Portfolio” screen. Simple inspection of the content of this file reveals the presence of the abstraction
layer over HTML afforded by the use of both the M7 macros and the additional macros implemented in
the NSTDIRom4/m42html.m4 file.

This file reveals not only the presence of the abstraction layer, but also the use of M7’s specific <m7dict>,
<m7sess> and <m7act> markup tags. The <m7dict> tag surrounds a character string key which is a refer-
ence to a value in the M7 dictionary. The tag and key are substituted for the corresponding dictionary value
at that key. For example, the “<m7dict>sess</m7dict>” substring is substituted with the value of the
login session’s unique identifying key.

The <m7sess> tags surronds a character string key which is a reference into an M7 session dictionary. In
contrast to an ordinary M7 dictionary, the state of an M7 session dictionary persists across HTTP requests be-
tween a user’s browser and pkInvest’s HTTP server. For example, the “<m7sess>port</m7sess>” substring
is substituted with the current session value of a key which uniquely identifies an entry in the Portfolio
database table.

The <m7act> tag triggers an invocation of a C function implemented as part of the “Controller” component
of the application. The notion of the Controller component is described in §3 on page 13. These C functions
are to be considered callback functions. They have a specified function signature, and they must be registered
with M7 in the “backend” source code via a call to m7callbackSet(). In this file, for example, the code
snippet

<m7act>
showPortfolioNamesInSess
__;__
2
__;__
m4beginOption(__ID__,__SELECTED__)__NAME__[[]]m4nbspace() m4endOption()

</m7act>

triggers the call showPortfolioNamesInSess(m7,arg,3), where m7 is an instance of the M7 C struct,
already allocated and initialised in the backend; and arg is an array of three character strings, initialised in
the backend, at the time of the call, as

arg = {
"showPortfolioNamesInSess",
"2",
"m4beginOption(__ID__,__SELECTED__)__NAME__[[]]m4nbspace() m4endOption()" }

and where, for the purpose of this example, the string "2" refers to the entry in the Portfolio database
table whose unique identifier field, id, equals 2. It is also evident that the “__;__” character string is used
as a delimiter in the construction of arg.

The substrings “__ID__”, “__SELECTED__” and “__NAME__” found in arg[2] are understood by the im-
plementation of showPortfolioNamesInSess(). They are appropriately substituted for the entry in the
underlying Portfolio database table whose id equals 2.

The remaining M4-formatted files are structurally identical to this file and will therefore not be described
further here.

23

1 m4_include(__INSTDIR__/m4/m42html.m4)m4_dnl
2 m4beginNormalPage()
3 m4moduleBar(portfolio)
4
5 m4beginPkinvestForm(pkinvest)
6
7 m4stateVar(req,doportfolio)
8 m4stateVars(sess)
9

10 m4beginActionBar()
11 m4beginSelect(port)
12 m4beginOption(0)[All portfolios][[]]m4nbspace() m4endOption()
13 <m7act>
14 showPortfolioNamesInSess
15 __;__
16 m4beginOption(__ID__,__SELECTED__)__NAME__[[]]m4nbspace() m4endOption()
17 </m7act>
18 m4endSelect()
19 m4beginActionList()
20 m4action(Show)m4action(Open)m4action(Edit)m4action(Add)m4action(Remove)
21 m4endActionList()
22 m4endActionBar(Portfolio)
23
24 m4beginWorkspace()
25
26 m4beginPortfolioTable()
27 <m7act>
28 showPortfolio3inSess
29 __;__
30 m4portfolioHeaderRow(12,m4_dnl
31 m4_dnl m4beginHref(pkinvest?req=doportfolio&submit=Show&port=__ID__&sess=<m7dict>sess</m7dict>)
32 m4_dnl m4beginSpan(class="portfolioname")
33 m4_dnl __NAME__
34 m4_dnl m4endSpan()
35 m4_dnl m4endHref()
36 m4beginSpan(class="portfolioname")[[]]__NAME__[[]]m4endSpan())
37 m4investmentHeaderRow()
38 __INVESTMENTGROUPS__
39 m4portfolioFooterRow(m4_dnl
40 __SPOTVALUE__,
41 __BUYSELL__,
42 __RETURN__,
43 __DIVIDEND__,
44 __LONGGROWTHRATEPERCENT__)
45 __;__
46 m4investmentgroupRow(m4_dnl
47 m4beginHref(pkinvest?req=doinvestmentgroup&submit=Open&group=__ID__&sess=<m7dict>sess</m7dict>)
48 m4beginSpan(class="investmentgroupname")[[]]__NAME__[[]]m4endSpan()
49 m4endHref(),
50 __PORTFOLIOFRACTION__,
51 __SPOTVALUE__,
52 __BUYSELL__,
53 __RETURN__,
54 __DIVIDEND__,
55 ,
56 __LONGGROWTHRATEPERCENT__)
57 __INVESTMENTS__
58 __;__
59 m4investmentRow(m4_dnl
60 m4nbspace(),
61 m4beginHref(pkinvest?req=doinvestment&submit=Open&inv=__ID__&sess=<m7dict>sess</m7dict>)
62 m4beginSpan(class="investmentname")[[]]__NAME__[[]]m4endSpan()

24

63 m4endHref(),
64 __CODE__,
65 __PORTFOLIOFRACTION__,
66 __INVESTMENTGROUPFRACTION__,
67 __QUANTITY__,
68 __SPOTVALUE__,
69 __BUYSELL__,
70 __RETURN__,
71 __DIVIDEND__,
72 __SPOTGROWTH__,
73 __LONGGROWTHRATEPERCENT__)
74 </m7act>
75 m4endPortfolioTable()
76
77 m4endWorkspace()
78
79 m4endPkinvestForm()
80
81 m4endNormalPage()
82 m4_dnl vim: set filetype=m4 :

3.3 The Controller component

3.3.1 The m7config.h file

Many of the individual C header files encapsulate the notion of an object class. When this is the case, a
single header file represents a single class, and the header file is conventionally called a class file. C header files
conventionally have the “.h” file extension, and their corresponding source files have the “.c” file extension.

The content of a class file must contain the definition of a C struct in which the public and private data
members of an object instance are stored. A convention adopted here is to denote data member privacy
with an underscore character (‘_’) as a prefix to the corresponding field in the struct. The M7CONFIG class
implemented here contains many public data members, two of which are configPath of type PKPATH *
and packageName of type char *. But it contains no private data members.

In contrast to object data members, class data members are not represented as C struct fields, but as global
file variables. For example, the M7CONFIG class implemented here has MINUTESPERYEAR as a class constant
data member of type double. Because MINUTESPERYEAR is a constant, it must conventionally be assigned
a contant value in this class file’s corresponding source file, namely in m7config.c.

A class file must also contain declarations of the class’s public object methods. The name of a public method
must include the name of the class as a prefix, and the first argument of the public method must be a pointer
to an object instance of the class. For example, in this class file, the line

extern int m7configInit(M7CONFIG *m7config, const char *file);

declares m7configInit() to be a public object method of the M7CONFIG class.

Private object methods are not declared in this manner. Instead, they are declared in a class file’s correspond-
ing source file. The declarations must be qualified as static, and the name of the private method must be
prefixed with an underscore (‘_’). For example, the M7CONFIG class implemented here contains no such pri-
vate object methods, but the PKINVEST class contains _pkinvestInvokeRequestHandler() as a private
object method which has been declared and implemented in pkinvest.c.

At least two public object methods must be declared and defined. These are an object constructor and
an object destructor. Constructors are conventionally denoted with the substring “Alloc” included in the
name of the method. And destructors are conventionally denoted with the substring “Free”. For example,
in this file, the lines

25

extern M7CONFIG *m7configAlloc(const char *file);
extern void m7configFree(const M7CONFIG *m7config);

declare m7configAlloc() and m7configFree() as a constructor and destructor for object instances of
the M7CONFIG class.

1 #ifndef _CONFIG
2 #define _CONFIG
3
4 /* ----------
5 * INCLUSIONS
6 * ---------- */
7
8 #include <pkpath.h>
9 #include <m7.h>

10
11 /* -----------------
12 * MACRO DEFINITIONS
13 * ----------------- */
14
15 /* -----------------
16 * TYPE DEFINITIONS
17 * ----------------- */
18
19 /*#include <m7types.h>*/
20
21 /*typedef struct M7configs*/
22 typedef struct M7configs {
23 PKPATH *configPath; /* File path to the configuration file. */
24 char *packageName, /* Package name of this application. */
25 *appVersion; /* Version instance of this application. */
26 PKPATH *m7dir, /* M7 directory location. */
27 *usersFile, /* File path to the "users" file. */
28 *groupsFile; /* File path to the "groups" file. */
29 PKPATH *htmlDir, /* Directory containing the app’s ".html" files. */
30 *m4Dir, /* Directory containing the app’s ".m4" files. */
31 *dataDir, /* Directory containing the app’s users’ data files. */
32 *sessionDir, /* Directory containing the M7SESS session files. */
33 *logDir; /* Directory containing any log files. */
34 int sessionLength; /* Session length. */
35 /*char *desKey;*/ /* DES encryption and decryption key. See ’authkey.{c,h}’. */
36 char *cryptSalt; /* "Salt" character string for encryption using ’crypt()’ */
37 /* library call. See the crypt(3) manual page.*/
38 char *m4name; /* Name of "m4" external binary. */
39 PKPATH *m4path; /* File path to the ’m4name’. */
40 char *m4options; /* Command-line options for ’m4name’. */
41 char *hourFormat, /* For an explanation of these date and time */
42 *minuteFormat, /* representation formats, refer to the ’date(1)’ */
43 *dayFormat, /* manual page. */
44 *monthFormat,
45 *yearFormat;
46 char *timeFormat, /* ’timeFormat’, ’monthYearFormat’, ’dateFormat’ */
47 *monthYearFormat, /* and ’datetimeFormat’ are variables from */
48 *dateFormat, /* ’hourFormat’, ’minuteFormat’, ’monthFormat’ */
49 *datetimeFormat; /* and ’yearFormat’. */
50 char *integerRegexPattern, /* Regular expression pattern for a "bounded" */
51 /* integer number. */
52 *floatRegexPattern; /* Regular expression pattern for a "bounded" */
53 /* floating point number . */
54 } M7CONFIG;
55

26

56 /* ---------------------
57 * FUNCTION DECLARATIONS
58 * --------------------- */
59

This declaration for the snprintf() function was copied from <stdio.h>. I needed to explicitly declare
snprintf() because after some investigation, I discovered that by defining _POSIX_SOURCE with a clang
“-D” command-line switch, the compilation produced the warning:

incompatible implicit declaration of built-in function ’snprintf’

60 /*extern int snprintf(char *, size_t, const char *, ...);*/
61
62 /*
63 * Constructors and desctructors.
64 */
65
66 extern M7CONFIG *m7configAlloc(const char *file);
67 extern void m7configFree(const M7CONFIG *m7config);
68 extern int m7configInit(M7CONFIG *m7config, const char *file);
69
70 /*
71 * Utility functions.
72 */
73
74 /* ---------------------------
75 * GLOBAL VARIABLE DEFINITIONS
76 * --------------------------- */
77
78 extern const char *LOGFNAME;
79 extern const char *CONFIGFILE;
80 /*
81 * This is terrible hack! To have this declared like this
82 * as a global variable is too ugly for me feel at ease.
83 * But, after spending far too much time trying to find a
84 * better way for the callback functions in ’callbacks.c’
85 * to access configuration data, I decided to accept this
86 * hack. PJ Kotschy. 22Sep11.
87 *
88 * Thinking about it again, such a global variable may not
89 * be so bad if it is thought of as a class public variable
90 * of the M7CONFIG class. That class is declared in this
91 * header file.
92 */
93 extern M7CONFIG *GLOBALCONFIG;
94 extern const double MINUTESPERYEAR;
95 extern PKPATH DATABASEPATH[];
96
97 #endif

4 Acknowledgments

Thank you, Mels, for affording me time to become arguably over-preoccupied with this work, and for pa-
tiently tolerating my moments over-exuberant enthusiasm. And yes Mels, I know I should instead have been
studying the physics books!

27

References

[1] Russell Kinnel. How expense ratios and star ratings predict success. Web site http://www.
morningstar.co.uk/uk/news/91222/p_article.aspx.

[2] W. Vetterling W. Press, S. Teukolsky and B. Flannery. Numerical Recipes in C. Cambridge University Press,
2 edition, 1992.

[3] R. Johnson E. Gamma, R. Helm and J. Vlissides. Design Patterns: Elements of Reusable Object-Oriented So�-
ware. Addison-Wesley, 1995.

[4] Paul Kotschy. pkTechDoc: Literate programming for non-TEX programmers, v1.0. Still to be published.

28

